Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray
The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has b...
Gespeichert in:
Veröffentlicht in: | eNeuro 2017-03, Vol.4 (2), p.ENEURO.0129-16.2017 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | ENEURO.0129-16.2017 |
container_title | eNeuro |
container_volume | 4 |
creator | Samineni, Vijay K Grajales-Reyes, Jose G Copits, Bryan A O'Brien, Daniel E Trigg, Sarah L Gomez, Adrian M Bruchas, Michael R Gereau, 4th, Robert W |
description | The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception. |
doi_str_mv | 10.1523/ENEURO.0129-16.2017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5370278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884166719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-30f0e3e6bc4fe08b1810a4b4a6c95099d25f44a30f19af7efae5336b8a1c530c3</originalsourceid><addsrcrecordid>eNpVkVtP4zAQhS0EAgT8AiTkx31J8SXXF6Qu2-2uBAVxebYmzgSM0jjYcaX-e1zaRezTzJG_OZ7RIeScswnPhLycLWbPD3cTxkWV8HwiGC_2yLGQhUxEKcT-t_6InHn_xhjjuSh4yQ_JkShlkUZ9TMIvs0L3gv1Ib20TOhiN7alt6cJqo3H4lPWazrswwhLGyBpNoW_ofPpzulULDM720NHHUA922Jl4ano6viK9R2fgPWAT9BihuYP1KTloofN4tqsn5Pn37On6T3JzN_97Pb1JdCb4mEjWMpSY1zptkZV1XJ5BWqeQ6ypjVdWIrE1TiBivoC2wBcykzOsSuM4k0_KEXG19h1AvsdHxTAedGpxZglsrC0b9_9KbV_ViVyqTBRNFGQ1-7AycjSf4US2N19h10KMNXvGyTHmeF7yKqNyi2lnvHbZf33CmNpmpbWZqk5niudpkFqcuvm_4NfMvIfkBcCmVwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884166719</pqid></control><display><type>article</type><title>Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Samineni, Vijay K ; Grajales-Reyes, Jose G ; Copits, Bryan A ; O'Brien, Daniel E ; Trigg, Sarah L ; Gomez, Adrian M ; Bruchas, Michael R ; Gereau, 4th, Robert W</creator><creatorcontrib>Samineni, Vijay K ; Grajales-Reyes, Jose G ; Copits, Bryan A ; O'Brien, Daniel E ; Trigg, Sarah L ; Gomez, Adrian M ; Bruchas, Michael R ; Gereau, 4th, Robert W</creatorcontrib><description>The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.</description><identifier>ISSN: 2373-2822</identifier><identifier>EISSN: 2373-2822</identifier><identifier>DOI: 10.1523/ENEURO.0129-16.2017</identifier><identifier>PMID: 28374016</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; gamma-Aminobutyric Acid - metabolism ; Glutamic Acid - metabolism ; Male ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Animal ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Neurotransmitter Agents - pharmacology ; New Research ; Nociception - drug effects ; Nociception - physiology ; Pain Perception - drug effects ; Pain Perception - physiology ; Pain Threshold - drug effects ; Pain Threshold - physiology ; Periaqueductal Gray - drug effects ; Periaqueductal Gray - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Tissue Culture Techniques</subject><ispartof>eNeuro, 2017-03, Vol.4 (2), p.ENEURO.0129-16.2017</ispartof><rights>Copyright © 2017 Samineni et al. 2017 Samineni et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-30f0e3e6bc4fe08b1810a4b4a6c95099d25f44a30f19af7efae5336b8a1c530c3</citedby><cites>FETCH-LOGICAL-c521t-30f0e3e6bc4fe08b1810a4b4a6c95099d25f44a30f19af7efae5336b8a1c530c3</cites><orcidid>0000-0003-4713-7816 ; 0000-0002-5428-4251 ; 0000-0002-9491-2793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370278/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5370278/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28374016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samineni, Vijay K</creatorcontrib><creatorcontrib>Grajales-Reyes, Jose G</creatorcontrib><creatorcontrib>Copits, Bryan A</creatorcontrib><creatorcontrib>O'Brien, Daniel E</creatorcontrib><creatorcontrib>Trigg, Sarah L</creatorcontrib><creatorcontrib>Gomez, Adrian M</creatorcontrib><creatorcontrib>Bruchas, Michael R</creatorcontrib><creatorcontrib>Gereau, 4th, Robert W</creatorcontrib><title>Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray</title><title>eNeuro</title><addtitle>eNeuro</addtitle><description>The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.</description><subject>Animals</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamic Acid - metabolism</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Models, Animal</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurotransmitter Agents - pharmacology</subject><subject>New Research</subject><subject>Nociception - drug effects</subject><subject>Nociception - physiology</subject><subject>Pain Perception - drug effects</subject><subject>Pain Perception - physiology</subject><subject>Pain Threshold - drug effects</subject><subject>Pain Threshold - physiology</subject><subject>Periaqueductal Gray - drug effects</subject><subject>Periaqueductal Gray - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Tissue Culture Techniques</subject><issn>2373-2822</issn><issn>2373-2822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtP4zAQhS0EAgT8AiTkx31J8SXXF6Qu2-2uBAVxebYmzgSM0jjYcaX-e1zaRezTzJG_OZ7RIeScswnPhLycLWbPD3cTxkWV8HwiGC_2yLGQhUxEKcT-t_6InHn_xhjjuSh4yQ_JkShlkUZ9TMIvs0L3gv1Ib20TOhiN7alt6cJqo3H4lPWazrswwhLGyBpNoW_ofPpzulULDM720NHHUA922Jl4ano6viK9R2fgPWAT9BihuYP1KTloofN4tqsn5Pn37On6T3JzN_97Pb1JdCb4mEjWMpSY1zptkZV1XJ5BWqeQ6ypjVdWIrE1TiBivoC2wBcykzOsSuM4k0_KEXG19h1AvsdHxTAedGpxZglsrC0b9_9KbV_ViVyqTBRNFGQ1-7AycjSf4US2N19h10KMNXvGyTHmeF7yKqNyi2lnvHbZf33CmNpmpbWZqk5niudpkFqcuvm_4NfMvIfkBcCmVwQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Samineni, Vijay K</creator><creator>Grajales-Reyes, Jose G</creator><creator>Copits, Bryan A</creator><creator>O'Brien, Daniel E</creator><creator>Trigg, Sarah L</creator><creator>Gomez, Adrian M</creator><creator>Bruchas, Michael R</creator><creator>Gereau, 4th, Robert W</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4713-7816</orcidid><orcidid>https://orcid.org/0000-0002-5428-4251</orcidid><orcidid>https://orcid.org/0000-0002-9491-2793</orcidid></search><sort><creationdate>20170301</creationdate><title>Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray</title><author>Samineni, Vijay K ; Grajales-Reyes, Jose G ; Copits, Bryan A ; O'Brien, Daniel E ; Trigg, Sarah L ; Gomez, Adrian M ; Bruchas, Michael R ; Gereau, 4th, Robert W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-30f0e3e6bc4fe08b1810a4b4a6c95099d25f44a30f19af7efae5336b8a1c530c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamic Acid - metabolism</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Models, Animal</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurotransmitter Agents - pharmacology</topic><topic>New Research</topic><topic>Nociception - drug effects</topic><topic>Nociception - physiology</topic><topic>Pain Perception - drug effects</topic><topic>Pain Perception - physiology</topic><topic>Pain Threshold - drug effects</topic><topic>Pain Threshold - physiology</topic><topic>Periaqueductal Gray - drug effects</topic><topic>Periaqueductal Gray - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Tissue Culture Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samineni, Vijay K</creatorcontrib><creatorcontrib>Grajales-Reyes, Jose G</creatorcontrib><creatorcontrib>Copits, Bryan A</creatorcontrib><creatorcontrib>O'Brien, Daniel E</creatorcontrib><creatorcontrib>Trigg, Sarah L</creatorcontrib><creatorcontrib>Gomez, Adrian M</creatorcontrib><creatorcontrib>Bruchas, Michael R</creatorcontrib><creatorcontrib>Gereau, 4th, Robert W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>eNeuro</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samineni, Vijay K</au><au>Grajales-Reyes, Jose G</au><au>Copits, Bryan A</au><au>O'Brien, Daniel E</au><au>Trigg, Sarah L</au><au>Gomez, Adrian M</au><au>Bruchas, Michael R</au><au>Gereau, 4th, Robert W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray</atitle><jtitle>eNeuro</jtitle><addtitle>eNeuro</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>4</volume><issue>2</issue><spage>ENEURO.0129-16.2017</spage><pages>ENEURO.0129-16.2017-</pages><issn>2373-2822</issn><eissn>2373-2822</eissn><abstract>The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>28374016</pmid><doi>10.1523/ENEURO.0129-16.2017</doi><orcidid>https://orcid.org/0000-0003-4713-7816</orcidid><orcidid>https://orcid.org/0000-0002-5428-4251</orcidid><orcidid>https://orcid.org/0000-0002-9491-2793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2373-2822 |
ispartof | eNeuro, 2017-03, Vol.4 (2), p.ENEURO.0129-16.2017 |
issn | 2373-2822 2373-2822 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5370278 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals gamma-Aminobutyric Acid - metabolism Glutamic Acid - metabolism Male Mice, Inbred C57BL Mice, Transgenic Models, Animal Neurons - cytology Neurons - drug effects Neurons - metabolism Neurotransmitter Agents - pharmacology New Research Nociception - drug effects Nociception - physiology Pain Perception - drug effects Pain Perception - physiology Pain Threshold - drug effects Pain Threshold - physiology Periaqueductal Gray - drug effects Periaqueductal Gray - physiology Synaptic Transmission - drug effects Synaptic Transmission - physiology Tissue Culture Techniques |
title | Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergent%20Modulation%20of%20Nociception%20by%20Glutamatergic%20and%20GABAergic%20Neuronal%20Subpopulations%20in%20the%20Periaqueductal%20Gray&rft.jtitle=eNeuro&rft.au=Samineni,%20Vijay%20K&rft.date=2017-03-01&rft.volume=4&rft.issue=2&rft.spage=ENEURO.0129-16.2017&rft.pages=ENEURO.0129-16.2017-&rft.issn=2373-2822&rft.eissn=2373-2822&rft_id=info:doi/10.1523/ENEURO.0129-16.2017&rft_dat=%3Cproquest_pubme%3E1884166719%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884166719&rft_id=info:pmid/28374016&rfr_iscdi=true |