Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation
Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer’s and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help d...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2017-03, Vol.65 (6), p.1096-1108.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1108.e6 |
---|---|
container_issue | 6 |
container_start_page | 1096 |
container_title | Molecular cell |
container_volume | 65 |
creator | Sin, Olga de Jong, Tristan Mata-Cabana, Alejandro Kudron, Michelle Zaini, Mohamad Amr Aprile, Francesco A. Seinstra, Renée I. Stroo, Esther Prins, Roméo Willinge Martineau, Céline N. Wang, Hai Hui Hogewerf, Wytse Steinhof, Anne Wanker, Erich E. Vendruscolo, Michele Calkhoven, Cornelis F. Reinke, Valerie Guryev, Victor Nollen, Ellen A.A. |
description | Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer’s and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.
[Display omitted]
•Inactivation of MOAG-2/LIR-3 reduces polyglutamine aggregation•MOAG-2/LIR-3 regulates Pol III-mediated transcription of small non-coding RNAs•Polyglutamine mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol•Polyglutamine converts MOAG-2/LIR-3 into an aggregation-promoting factor
The cellular mechanisms that drive polyglutamine aggregation are poorly understood. Sin et al. show that polyglutamine relocates MOAG-2/LIR-3 from the nucleus to the cytosol, thereby converting this protein into an aggregation-promoting factor to drive protein aggregation and toxicity. |
doi_str_mv | 10.1016/j.molcel.2017.02.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5364375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517301375</els_id><sourcerecordid>1878825426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-567b9a118c0231eef4cb6fc5d6f88535b1254582e2b4820fbecae6942f7d1ecc3</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaElX-0_CEXHXryRZEnWXgpL0iaGpQ2hPQtZHjna2lYqaQP591G6m7S9FAZmmI83b-YhdEbJghIqzzeLKYwWxgUjtFkQVowdoGNKlk3FqeRv9jFrpDhCJyltCKFcqOUhOmKqJlIQcYy6toc5e-etyT7MODhsZnz7dYVvwvg4QTQJcNu2-BaG7WhyiHjt55_Q4xzwpU9Q6tUqpWC9ySV7E0MGP-PVMEQYfmO-Q2-dGRO83_tT9OPL5-8X19X621V7sVpXlss6V0I23dJQqixhNQVw3HbSWdFLp5SoRUeZKPQZsI4rRlwH1oBccuaanoK19Sn6tMO933YT9LbcFc2o76OfTHzUwXj9b2X2d3oID1rUkteNKAAf9wAx_NpCynryqXx4NDOEbdJUNUoVEkyWVr5rtTGkFMG9rqFEP8ujN3onj36WRxNWjJWxD39TfB160ePPDVAe9eAh6mQ9zBZ6H8Fm3Qf__w1Pfhqkpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878825426</pqid></control><display><type>article</type><title>Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Free Full-Text Journals in Chemistry</source><creator>Sin, Olga ; de Jong, Tristan ; Mata-Cabana, Alejandro ; Kudron, Michelle ; Zaini, Mohamad Amr ; Aprile, Francesco A. ; Seinstra, Renée I. ; Stroo, Esther ; Prins, Roméo Willinge ; Martineau, Céline N. ; Wang, Hai Hui ; Hogewerf, Wytse ; Steinhof, Anne ; Wanker, Erich E. ; Vendruscolo, Michele ; Calkhoven, Cornelis F. ; Reinke, Valerie ; Guryev, Victor ; Nollen, Ellen A.A.</creator><creatorcontrib>Sin, Olga ; de Jong, Tristan ; Mata-Cabana, Alejandro ; Kudron, Michelle ; Zaini, Mohamad Amr ; Aprile, Francesco A. ; Seinstra, Renée I. ; Stroo, Esther ; Prins, Roméo Willinge ; Martineau, Céline N. ; Wang, Hai Hui ; Hogewerf, Wytse ; Steinhof, Anne ; Wanker, Erich E. ; Vendruscolo, Michele ; Calkhoven, Cornelis F. ; Reinke, Valerie ; Guryev, Victor ; Nollen, Ellen A.A.</creatorcontrib><description>Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer’s and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.
[Display omitted]
•Inactivation of MOAG-2/LIR-3 reduces polyglutamine aggregation•MOAG-2/LIR-3 regulates Pol III-mediated transcription of small non-coding RNAs•Polyglutamine mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol•Polyglutamine converts MOAG-2/LIR-3 into an aggregation-promoting factor
The cellular mechanisms that drive polyglutamine aggregation are poorly understood. Sin et al. show that polyglutamine relocates MOAG-2/LIR-3 from the nucleus to the cytosol, thereby converting this protein into an aggregation-promoting factor to drive protein aggregation and toxicity.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.02.022</identifier><identifier>PMID: 28306505</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus ; Animals ; Animals, Genetically Modified ; Binding Sites ; C. elegans ; Caenorhabditis elegans - enzymology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Nucleus - enzymology ; Cytosol - enzymology ; Disease Models, Animal ; MOAG-2/LIR-3 ; Neurodegenerative Diseases - enzymology ; Neurodegenerative Diseases - genetics ; Neurodegenerative Diseases - pathology ; non-coding RNA ; Peptides - metabolism ; polyglutamine ; Promoter Regions, Genetic ; Protein Aggregates ; protein aggregation ; Protein Aggregation, Pathological ; Protein Binding ; protein homeostasis ; protein quality control ; RNA Interference ; RNA polymerase III ; RNA Polymerase III - genetics ; RNA Polymerase III - metabolism ; RNA, Small Untranslated - genetics ; RNA, Small Untranslated - metabolism ; snoRNA ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; tRNA</subject><ispartof>Molecular cell, 2017-03, Vol.65 (6), p.1096-1108.e6</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-567b9a118c0231eef4cb6fc5d6f88535b1254582e2b4820fbecae6942f7d1ecc3</citedby><cites>FETCH-LOGICAL-c463t-567b9a118c0231eef4cb6fc5d6f88535b1254582e2b4820fbecae6942f7d1ecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2017.02.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28306505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sin, Olga</creatorcontrib><creatorcontrib>de Jong, Tristan</creatorcontrib><creatorcontrib>Mata-Cabana, Alejandro</creatorcontrib><creatorcontrib>Kudron, Michelle</creatorcontrib><creatorcontrib>Zaini, Mohamad Amr</creatorcontrib><creatorcontrib>Aprile, Francesco A.</creatorcontrib><creatorcontrib>Seinstra, Renée I.</creatorcontrib><creatorcontrib>Stroo, Esther</creatorcontrib><creatorcontrib>Prins, Roméo Willinge</creatorcontrib><creatorcontrib>Martineau, Céline N.</creatorcontrib><creatorcontrib>Wang, Hai Hui</creatorcontrib><creatorcontrib>Hogewerf, Wytse</creatorcontrib><creatorcontrib>Steinhof, Anne</creatorcontrib><creatorcontrib>Wanker, Erich E.</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Calkhoven, Cornelis F.</creatorcontrib><creatorcontrib>Reinke, Valerie</creatorcontrib><creatorcontrib>Guryev, Victor</creatorcontrib><creatorcontrib>Nollen, Ellen A.A.</creatorcontrib><title>Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer’s and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.
[Display omitted]
•Inactivation of MOAG-2/LIR-3 reduces polyglutamine aggregation•MOAG-2/LIR-3 regulates Pol III-mediated transcription of small non-coding RNAs•Polyglutamine mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol•Polyglutamine converts MOAG-2/LIR-3 into an aggregation-promoting factor
The cellular mechanisms that drive polyglutamine aggregation are poorly understood. Sin et al. show that polyglutamine relocates MOAG-2/LIR-3 from the nucleus to the cytosol, thereby converting this protein into an aggregation-promoting factor to drive protein aggregation and toxicity.</description><subject>Active Transport, Cell Nucleus</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Binding Sites</subject><subject>C. elegans</subject><subject>Caenorhabditis elegans - enzymology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Nucleus - enzymology</subject><subject>Cytosol - enzymology</subject><subject>Disease Models, Animal</subject><subject>MOAG-2/LIR-3</subject><subject>Neurodegenerative Diseases - enzymology</subject><subject>Neurodegenerative Diseases - genetics</subject><subject>Neurodegenerative Diseases - pathology</subject><subject>non-coding RNA</subject><subject>Peptides - metabolism</subject><subject>polyglutamine</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Aggregates</subject><subject>protein aggregation</subject><subject>Protein Aggregation, Pathological</subject><subject>Protein Binding</subject><subject>protein homeostasis</subject><subject>protein quality control</subject><subject>RNA Interference</subject><subject>RNA polymerase III</subject><subject>RNA Polymerase III - genetics</subject><subject>RNA Polymerase III - metabolism</subject><subject>RNA, Small Untranslated - genetics</subject><subject>RNA, Small Untranslated - metabolism</subject><subject>snoRNA</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>tRNA</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1r3DAQFaElX-0_CEXHXryRZEnWXgpL0iaGpQ2hPQtZHjna2lYqaQP591G6m7S9FAZmmI83b-YhdEbJghIqzzeLKYwWxgUjtFkQVowdoGNKlk3FqeRv9jFrpDhCJyltCKFcqOUhOmKqJlIQcYy6toc5e-etyT7MODhsZnz7dYVvwvg4QTQJcNu2-BaG7WhyiHjt55_Q4xzwpU9Q6tUqpWC9ySV7E0MGP-PVMEQYfmO-Q2-dGRO83_tT9OPL5-8X19X621V7sVpXlss6V0I23dJQqixhNQVw3HbSWdFLp5SoRUeZKPQZsI4rRlwH1oBccuaanoK19Sn6tMO933YT9LbcFc2o76OfTHzUwXj9b2X2d3oID1rUkteNKAAf9wAx_NpCynryqXx4NDOEbdJUNUoVEkyWVr5rtTGkFMG9rqFEP8ujN3onj36WRxNWjJWxD39TfB160ePPDVAe9eAh6mQ9zBZ6H8Fm3Qf__w1Pfhqkpw</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Sin, Olga</creator><creator>de Jong, Tristan</creator><creator>Mata-Cabana, Alejandro</creator><creator>Kudron, Michelle</creator><creator>Zaini, Mohamad Amr</creator><creator>Aprile, Francesco A.</creator><creator>Seinstra, Renée I.</creator><creator>Stroo, Esther</creator><creator>Prins, Roméo Willinge</creator><creator>Martineau, Céline N.</creator><creator>Wang, Hai Hui</creator><creator>Hogewerf, Wytse</creator><creator>Steinhof, Anne</creator><creator>Wanker, Erich E.</creator><creator>Vendruscolo, Michele</creator><creator>Calkhoven, Cornelis F.</creator><creator>Reinke, Valerie</creator><creator>Guryev, Victor</creator><creator>Nollen, Ellen A.A.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170316</creationdate><title>Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation</title><author>Sin, Olga ; de Jong, Tristan ; Mata-Cabana, Alejandro ; Kudron, Michelle ; Zaini, Mohamad Amr ; Aprile, Francesco A. ; Seinstra, Renée I. ; Stroo, Esther ; Prins, Roméo Willinge ; Martineau, Céline N. ; Wang, Hai Hui ; Hogewerf, Wytse ; Steinhof, Anne ; Wanker, Erich E. ; Vendruscolo, Michele ; Calkhoven, Cornelis F. ; Reinke, Valerie ; Guryev, Victor ; Nollen, Ellen A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-567b9a118c0231eef4cb6fc5d6f88535b1254582e2b4820fbecae6942f7d1ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Binding Sites</topic><topic>C. elegans</topic><topic>Caenorhabditis elegans - enzymology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Nucleus - enzymology</topic><topic>Cytosol - enzymology</topic><topic>Disease Models, Animal</topic><topic>MOAG-2/LIR-3</topic><topic>Neurodegenerative Diseases - enzymology</topic><topic>Neurodegenerative Diseases - genetics</topic><topic>Neurodegenerative Diseases - pathology</topic><topic>non-coding RNA</topic><topic>Peptides - metabolism</topic><topic>polyglutamine</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Aggregates</topic><topic>protein aggregation</topic><topic>Protein Aggregation, Pathological</topic><topic>Protein Binding</topic><topic>protein homeostasis</topic><topic>protein quality control</topic><topic>RNA Interference</topic><topic>RNA polymerase III</topic><topic>RNA Polymerase III - genetics</topic><topic>RNA Polymerase III - metabolism</topic><topic>RNA, Small Untranslated - genetics</topic><topic>RNA, Small Untranslated - metabolism</topic><topic>snoRNA</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sin, Olga</creatorcontrib><creatorcontrib>de Jong, Tristan</creatorcontrib><creatorcontrib>Mata-Cabana, Alejandro</creatorcontrib><creatorcontrib>Kudron, Michelle</creatorcontrib><creatorcontrib>Zaini, Mohamad Amr</creatorcontrib><creatorcontrib>Aprile, Francesco A.</creatorcontrib><creatorcontrib>Seinstra, Renée I.</creatorcontrib><creatorcontrib>Stroo, Esther</creatorcontrib><creatorcontrib>Prins, Roméo Willinge</creatorcontrib><creatorcontrib>Martineau, Céline N.</creatorcontrib><creatorcontrib>Wang, Hai Hui</creatorcontrib><creatorcontrib>Hogewerf, Wytse</creatorcontrib><creatorcontrib>Steinhof, Anne</creatorcontrib><creatorcontrib>Wanker, Erich E.</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Calkhoven, Cornelis F.</creatorcontrib><creatorcontrib>Reinke, Valerie</creatorcontrib><creatorcontrib>Guryev, Victor</creatorcontrib><creatorcontrib>Nollen, Ellen A.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sin, Olga</au><au>de Jong, Tristan</au><au>Mata-Cabana, Alejandro</au><au>Kudron, Michelle</au><au>Zaini, Mohamad Amr</au><au>Aprile, Francesco A.</au><au>Seinstra, Renée I.</au><au>Stroo, Esther</au><au>Prins, Roméo Willinge</au><au>Martineau, Céline N.</au><au>Wang, Hai Hui</au><au>Hogewerf, Wytse</au><au>Steinhof, Anne</au><au>Wanker, Erich E.</au><au>Vendruscolo, Michele</au><au>Calkhoven, Cornelis F.</au><au>Reinke, Valerie</au><au>Guryev, Victor</au><au>Nollen, Ellen A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-03-16</date><risdate>2017</risdate><volume>65</volume><issue>6</issue><spage>1096</spage><epage>1108.e6</epage><pages>1096-1108.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer’s and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation. In the absence of polyglutamine, MOAG-2/LIR-3 regulates the RNA polymerase III-associated transcription of small non-coding RNAs. This regulation is lost in the presence of polyglutamine, which mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol. We then show biochemically that MOAG-2/LIR-3 can also catalyze the aggregation of polyglutamine-expanded huntingtin. These results suggest that polyglutamine can induce an aggregation-promoting activity of MOAG-2/LIR-3 in the cytosol. The concept that certain aggregation-prone proteins can convert other endogenous proteins into drivers of aggregation and toxicity adds to the understanding of how cellular homeostasis can be deteriorated in protein misfolding diseases.
[Display omitted]
•Inactivation of MOAG-2/LIR-3 reduces polyglutamine aggregation•MOAG-2/LIR-3 regulates Pol III-mediated transcription of small non-coding RNAs•Polyglutamine mislocalizes MOAG-2/LIR-3 from the nucleus to the cytosol•Polyglutamine converts MOAG-2/LIR-3 into an aggregation-promoting factor
The cellular mechanisms that drive polyglutamine aggregation are poorly understood. Sin et al. show that polyglutamine relocates MOAG-2/LIR-3 from the nucleus to the cytosol, thereby converting this protein into an aggregation-promoting factor to drive protein aggregation and toxicity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28306505</pmid><doi>10.1016/j.molcel.2017.02.022</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2017-03, Vol.65 (6), p.1096-1108.e6 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5364375 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Free Full-Text Journals in Chemistry |
subjects | Active Transport, Cell Nucleus Animals Animals, Genetically Modified Binding Sites C. elegans Caenorhabditis elegans - enzymology Caenorhabditis elegans - genetics Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Cell Nucleus - enzymology Cytosol - enzymology Disease Models, Animal MOAG-2/LIR-3 Neurodegenerative Diseases - enzymology Neurodegenerative Diseases - genetics Neurodegenerative Diseases - pathology non-coding RNA Peptides - metabolism polyglutamine Promoter Regions, Genetic Protein Aggregates protein aggregation Protein Aggregation, Pathological Protein Binding protein homeostasis protein quality control RNA Interference RNA polymerase III RNA Polymerase III - genetics RNA Polymerase III - metabolism RNA, Small Untranslated - genetics RNA, Small Untranslated - metabolism snoRNA Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic tRNA |
title | Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20an%20RNA%20Polymerase%20III%20Regulator%20Linked%20to%20Disease-Associated%20Protein%20Aggregation&rft.jtitle=Molecular%20cell&rft.au=Sin,%20Olga&rft.date=2017-03-16&rft.volume=65&rft.issue=6&rft.spage=1096&rft.epage=1108.e6&rft.pages=1096-1108.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.02.022&rft_dat=%3Cproquest_pubme%3E1878825426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878825426&rft_id=info:pmid/28306505&rft_els_id=S1097276517301375&rfr_iscdi=true |