Epigenetic clock analysis of diet, exercise, education, and lifestyle factors

Behavioral and lifestyle factors have been shown to relate to a number of health-related outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to predict all-caus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging (Albany, NY.) NY.), 2017-02, Vol.9 (2), p.419-446
Hauptverfasser: Quach, Austin, Levine, Morgan E, Tanaka, Toshiko, Lu, Ake T, Chen, Brian H, Ferrucci, Luigi, Ritz, Beate, Bandinelli, Stefania, Neuhouser, Marian L, Beasley, Jeannette M, Snetselaar, Linda, Wallace, Robert B, Tsao, Philip S, Absher, Devin, Assimes, Themistocles L, Stewart, James D, Li, Yun, Hou, Lifang, Baccarelli, Andrea A, Whitsel, Eric A, Horvath, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 2
container_start_page 419
container_title Aging (Albany, NY.)
container_volume 9
creator Quach, Austin
Levine, Morgan E
Tanaka, Toshiko
Lu, Ake T
Chen, Brian H
Ferrucci, Luigi
Ritz, Beate
Bandinelli, Stefania
Neuhouser, Marian L
Beasley, Jeannette M
Snetselaar, Linda
Wallace, Robert B
Tsao, Philip S
Absher, Devin
Assimes, Themistocles L
Stewart, James D
Li, Yun
Hou, Lifang
Baccarelli, Andrea A
Whitsel, Eric A
Horvath, Steve
description Behavioral and lifestyle factors have been shown to relate to a number of health-related outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to predict all-cause mortality, chronic conditions, and age-related functional decline. We analyze cross-sectional data from 4,173 postmenopausal female participants from the Women's Health Initiative, as well as 402 male and female participants from the Italian cohort study, Invecchiare nel Chianti.Extrinsic epigenetic age acceleration (EEAA) exhibits significant associations with fish intake (p=0.02), moderate alcohol consumption (p=0.01), education (p=3x10 ), BMI (p=0.01), and blood carotenoid levels (p=1x10 )-an indicator of fruit and vegetable consumption, whereas intrinsic epigenetic age acceleration (IEAA) is associated with poultry intake (p=0.03) and BMI (p=0.05). Both EEAA and IEAA were also found to relate to indicators of metabolic syndrome, which appear to mediate their associations with BMI. Metformin-the first-line medication for the treatment of type 2 diabetes-does not delay epigenetic aging in this observational study. Finally, longitudinal data suggests that an increase in BMI is associated with increase in both EEAA and IEAA.Overall, the epigenetic age analysis of blood confirms the conventional wisdom regarding the benefits of eating a high plant diet with lean meats, moderate alcohol consumption, physical activity, and education, as well as the health risks of obesity and metabolic syndrome.
doi_str_mv 10.18632/aging.101168
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5361673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28198702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-dd9e3034b3f743b57865695fee2ea82363736b3b8f95143862cd29662b8875243</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMotlaPXmV_gFvzvclFkFI_oOJFzyGbnazR7W7ZpGL_vUurpZ7mhXnmHXgQuiR4SpRk9MbWoa2nBBMi1REaE81FzoXSxwd5hM5i_MBYCsHlKRpRRbQqMB2j5_kq1NBCCi5zTec-M9vaZhNDzDqfVQHSdQbf0LsQYUjV2tkUuvZ6wKqsCR5i2jSQeetS18dzdOJtE-Hid07Q2_38dfaYL14enmZ3i9xxXaS8qjQwzHjJfMFZKQolhdTCA1CwijLJCiZLViqvBeFMSeoqqqWkpVKFoJxN0O2ud7Uul1A5aFNvG7Pqw9L2G9PZYP5v2vBu6u7LCCaJLNhQkO8KXN_F2IPf3xJstl7N1qvZeR34q8OHe_pPJPsBHAJ1Dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Epigenetic clock analysis of diet, exercise, education, and lifestyle factors</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Quach, Austin ; Levine, Morgan E ; Tanaka, Toshiko ; Lu, Ake T ; Chen, Brian H ; Ferrucci, Luigi ; Ritz, Beate ; Bandinelli, Stefania ; Neuhouser, Marian L ; Beasley, Jeannette M ; Snetselaar, Linda ; Wallace, Robert B ; Tsao, Philip S ; Absher, Devin ; Assimes, Themistocles L ; Stewart, James D ; Li, Yun ; Hou, Lifang ; Baccarelli, Andrea A ; Whitsel, Eric A ; Horvath, Steve</creator><creatorcontrib>Quach, Austin ; Levine, Morgan E ; Tanaka, Toshiko ; Lu, Ake T ; Chen, Brian H ; Ferrucci, Luigi ; Ritz, Beate ; Bandinelli, Stefania ; Neuhouser, Marian L ; Beasley, Jeannette M ; Snetselaar, Linda ; Wallace, Robert B ; Tsao, Philip S ; Absher, Devin ; Assimes, Themistocles L ; Stewart, James D ; Li, Yun ; Hou, Lifang ; Baccarelli, Andrea A ; Whitsel, Eric A ; Horvath, Steve</creatorcontrib><description>Behavioral and lifestyle factors have been shown to relate to a number of health-related outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to predict all-cause mortality, chronic conditions, and age-related functional decline. We analyze cross-sectional data from 4,173 postmenopausal female participants from the Women's Health Initiative, as well as 402 male and female participants from the Italian cohort study, Invecchiare nel Chianti.Extrinsic epigenetic age acceleration (EEAA) exhibits significant associations with fish intake (p=0.02), moderate alcohol consumption (p=0.01), education (p=3x10 ), BMI (p=0.01), and blood carotenoid levels (p=1x10 )-an indicator of fruit and vegetable consumption, whereas intrinsic epigenetic age acceleration (IEAA) is associated with poultry intake (p=0.03) and BMI (p=0.05). Both EEAA and IEAA were also found to relate to indicators of metabolic syndrome, which appear to mediate their associations with BMI. Metformin-the first-line medication for the treatment of type 2 diabetes-does not delay epigenetic aging in this observational study. Finally, longitudinal data suggests that an increase in BMI is associated with increase in both EEAA and IEAA.Overall, the epigenetic age analysis of blood confirms the conventional wisdom regarding the benefits of eating a high plant diet with lean meats, moderate alcohol consumption, physical activity, and education, as well as the health risks of obesity and metabolic syndrome.</description><identifier>ISSN: 1945-4589</identifier><identifier>EISSN: 1945-4589</identifier><identifier>DOI: 10.18632/aging.101168</identifier><identifier>PMID: 28198702</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Aged ; Aged, 80 and over ; Aging - genetics ; Aging - metabolism ; Cohort Studies ; Cross-Sectional Studies ; Diet ; Educational Status ; Epigenesis, Genetic ; Exercise ; Female ; Humans ; Life Style ; Middle Aged ; Research Paper</subject><ispartof>Aging (Albany, NY.), 2017-02, Vol.9 (2), p.419-446</ispartof><rights>Copyright: © 2017 Quach et al. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-dd9e3034b3f743b57865695fee2ea82363736b3b8f95143862cd29662b8875243</citedby><cites>FETCH-LOGICAL-c497t-dd9e3034b3f743b57865695fee2ea82363736b3b8f95143862cd29662b8875243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28198702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quach, Austin</creatorcontrib><creatorcontrib>Levine, Morgan E</creatorcontrib><creatorcontrib>Tanaka, Toshiko</creatorcontrib><creatorcontrib>Lu, Ake T</creatorcontrib><creatorcontrib>Chen, Brian H</creatorcontrib><creatorcontrib>Ferrucci, Luigi</creatorcontrib><creatorcontrib>Ritz, Beate</creatorcontrib><creatorcontrib>Bandinelli, Stefania</creatorcontrib><creatorcontrib>Neuhouser, Marian L</creatorcontrib><creatorcontrib>Beasley, Jeannette M</creatorcontrib><creatorcontrib>Snetselaar, Linda</creatorcontrib><creatorcontrib>Wallace, Robert B</creatorcontrib><creatorcontrib>Tsao, Philip S</creatorcontrib><creatorcontrib>Absher, Devin</creatorcontrib><creatorcontrib>Assimes, Themistocles L</creatorcontrib><creatorcontrib>Stewart, James D</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Hou, Lifang</creatorcontrib><creatorcontrib>Baccarelli, Andrea A</creatorcontrib><creatorcontrib>Whitsel, Eric A</creatorcontrib><creatorcontrib>Horvath, Steve</creatorcontrib><title>Epigenetic clock analysis of diet, exercise, education, and lifestyle factors</title><title>Aging (Albany, NY.)</title><addtitle>Aging (Albany NY)</addtitle><description>Behavioral and lifestyle factors have been shown to relate to a number of health-related outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to predict all-cause mortality, chronic conditions, and age-related functional decline. We analyze cross-sectional data from 4,173 postmenopausal female participants from the Women's Health Initiative, as well as 402 male and female participants from the Italian cohort study, Invecchiare nel Chianti.Extrinsic epigenetic age acceleration (EEAA) exhibits significant associations with fish intake (p=0.02), moderate alcohol consumption (p=0.01), education (p=3x10 ), BMI (p=0.01), and blood carotenoid levels (p=1x10 )-an indicator of fruit and vegetable consumption, whereas intrinsic epigenetic age acceleration (IEAA) is associated with poultry intake (p=0.03) and BMI (p=0.05). Both EEAA and IEAA were also found to relate to indicators of metabolic syndrome, which appear to mediate their associations with BMI. Metformin-the first-line medication for the treatment of type 2 diabetes-does not delay epigenetic aging in this observational study. Finally, longitudinal data suggests that an increase in BMI is associated with increase in both EEAA and IEAA.Overall, the epigenetic age analysis of blood confirms the conventional wisdom regarding the benefits of eating a high plant diet with lean meats, moderate alcohol consumption, physical activity, and education, as well as the health risks of obesity and metabolic syndrome.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Cohort Studies</subject><subject>Cross-Sectional Studies</subject><subject>Diet</subject><subject>Educational Status</subject><subject>Epigenesis, Genetic</subject><subject>Exercise</subject><subject>Female</subject><subject>Humans</subject><subject>Life Style</subject><subject>Middle Aged</subject><subject>Research Paper</subject><issn>1945-4589</issn><issn>1945-4589</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LAzEQhoMotlaPXmV_gFvzvclFkFI_oOJFzyGbnazR7W7ZpGL_vUurpZ7mhXnmHXgQuiR4SpRk9MbWoa2nBBMi1REaE81FzoXSxwd5hM5i_MBYCsHlKRpRRbQqMB2j5_kq1NBCCi5zTec-M9vaZhNDzDqfVQHSdQbf0LsQYUjV2tkUuvZ6wKqsCR5i2jSQeetS18dzdOJtE-Hid07Q2_38dfaYL14enmZ3i9xxXaS8qjQwzHjJfMFZKQolhdTCA1CwijLJCiZLViqvBeFMSeoqqqWkpVKFoJxN0O2ud7Uul1A5aFNvG7Pqw9L2G9PZYP5v2vBu6u7LCCaJLNhQkO8KXN_F2IPf3xJstl7N1qvZeR34q8OHe_pPJPsBHAJ1Dg</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Quach, Austin</creator><creator>Levine, Morgan E</creator><creator>Tanaka, Toshiko</creator><creator>Lu, Ake T</creator><creator>Chen, Brian H</creator><creator>Ferrucci, Luigi</creator><creator>Ritz, Beate</creator><creator>Bandinelli, Stefania</creator><creator>Neuhouser, Marian L</creator><creator>Beasley, Jeannette M</creator><creator>Snetselaar, Linda</creator><creator>Wallace, Robert B</creator><creator>Tsao, Philip S</creator><creator>Absher, Devin</creator><creator>Assimes, Themistocles L</creator><creator>Stewart, James D</creator><creator>Li, Yun</creator><creator>Hou, Lifang</creator><creator>Baccarelli, Andrea A</creator><creator>Whitsel, Eric A</creator><creator>Horvath, Steve</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170214</creationdate><title>Epigenetic clock analysis of diet, exercise, education, and lifestyle factors</title><author>Quach, Austin ; Levine, Morgan E ; Tanaka, Toshiko ; Lu, Ake T ; Chen, Brian H ; Ferrucci, Luigi ; Ritz, Beate ; Bandinelli, Stefania ; Neuhouser, Marian L ; Beasley, Jeannette M ; Snetselaar, Linda ; Wallace, Robert B ; Tsao, Philip S ; Absher, Devin ; Assimes, Themistocles L ; Stewart, James D ; Li, Yun ; Hou, Lifang ; Baccarelli, Andrea A ; Whitsel, Eric A ; Horvath, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-dd9e3034b3f743b57865695fee2ea82363736b3b8f95143862cd29662b8875243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Cohort Studies</topic><topic>Cross-Sectional Studies</topic><topic>Diet</topic><topic>Educational Status</topic><topic>Epigenesis, Genetic</topic><topic>Exercise</topic><topic>Female</topic><topic>Humans</topic><topic>Life Style</topic><topic>Middle Aged</topic><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Quach, Austin</creatorcontrib><creatorcontrib>Levine, Morgan E</creatorcontrib><creatorcontrib>Tanaka, Toshiko</creatorcontrib><creatorcontrib>Lu, Ake T</creatorcontrib><creatorcontrib>Chen, Brian H</creatorcontrib><creatorcontrib>Ferrucci, Luigi</creatorcontrib><creatorcontrib>Ritz, Beate</creatorcontrib><creatorcontrib>Bandinelli, Stefania</creatorcontrib><creatorcontrib>Neuhouser, Marian L</creatorcontrib><creatorcontrib>Beasley, Jeannette M</creatorcontrib><creatorcontrib>Snetselaar, Linda</creatorcontrib><creatorcontrib>Wallace, Robert B</creatorcontrib><creatorcontrib>Tsao, Philip S</creatorcontrib><creatorcontrib>Absher, Devin</creatorcontrib><creatorcontrib>Assimes, Themistocles L</creatorcontrib><creatorcontrib>Stewart, James D</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Hou, Lifang</creatorcontrib><creatorcontrib>Baccarelli, Andrea A</creatorcontrib><creatorcontrib>Whitsel, Eric A</creatorcontrib><creatorcontrib>Horvath, Steve</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging (Albany, NY.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quach, Austin</au><au>Levine, Morgan E</au><au>Tanaka, Toshiko</au><au>Lu, Ake T</au><au>Chen, Brian H</au><au>Ferrucci, Luigi</au><au>Ritz, Beate</au><au>Bandinelli, Stefania</au><au>Neuhouser, Marian L</au><au>Beasley, Jeannette M</au><au>Snetselaar, Linda</au><au>Wallace, Robert B</au><au>Tsao, Philip S</au><au>Absher, Devin</au><au>Assimes, Themistocles L</au><au>Stewart, James D</au><au>Li, Yun</au><au>Hou, Lifang</au><au>Baccarelli, Andrea A</au><au>Whitsel, Eric A</au><au>Horvath, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetic clock analysis of diet, exercise, education, and lifestyle factors</atitle><jtitle>Aging (Albany, NY.)</jtitle><addtitle>Aging (Albany NY)</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>419</spage><epage>446</epage><pages>419-446</pages><issn>1945-4589</issn><eissn>1945-4589</eissn><abstract>Behavioral and lifestyle factors have been shown to relate to a number of health-related outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to predict all-cause mortality, chronic conditions, and age-related functional decline. We analyze cross-sectional data from 4,173 postmenopausal female participants from the Women's Health Initiative, as well as 402 male and female participants from the Italian cohort study, Invecchiare nel Chianti.Extrinsic epigenetic age acceleration (EEAA) exhibits significant associations with fish intake (p=0.02), moderate alcohol consumption (p=0.01), education (p=3x10 ), BMI (p=0.01), and blood carotenoid levels (p=1x10 )-an indicator of fruit and vegetable consumption, whereas intrinsic epigenetic age acceleration (IEAA) is associated with poultry intake (p=0.03) and BMI (p=0.05). Both EEAA and IEAA were also found to relate to indicators of metabolic syndrome, which appear to mediate their associations with BMI. Metformin-the first-line medication for the treatment of type 2 diabetes-does not delay epigenetic aging in this observational study. Finally, longitudinal data suggests that an increase in BMI is associated with increase in both EEAA and IEAA.Overall, the epigenetic age analysis of blood confirms the conventional wisdom regarding the benefits of eating a high plant diet with lean meats, moderate alcohol consumption, physical activity, and education, as well as the health risks of obesity and metabolic syndrome.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>28198702</pmid><doi>10.18632/aging.101168</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1945-4589
ispartof Aging (Albany, NY.), 2017-02, Vol.9 (2), p.419-446
issn 1945-4589
1945-4589
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5361673
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Aged
Aged, 80 and over
Aging - genetics
Aging - metabolism
Cohort Studies
Cross-Sectional Studies
Diet
Educational Status
Epigenesis, Genetic
Exercise
Female
Humans
Life Style
Middle Aged
Research Paper
title Epigenetic clock analysis of diet, exercise, education, and lifestyle factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetic%20clock%20analysis%20of%20diet,%20exercise,%20education,%20and%20lifestyle%20factors&rft.jtitle=Aging%20(Albany,%20NY.)&rft.au=Quach,%20Austin&rft.date=2017-02-14&rft.volume=9&rft.issue=2&rft.spage=419&rft.epage=446&rft.pages=419-446&rft.issn=1945-4589&rft.eissn=1945-4589&rft_id=info:doi/10.18632/aging.101168&rft_dat=%3Cpubmed_cross%3E28198702%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28198702&rfr_iscdi=true