Vertebrate Cryptochromes are Vestigial Flavoproteins
All cryptochromes are currently classified as flavoproteins. In animals their best-described role is as components of the circadian clock. This circadian function is variable, and can be either light-dependent or -independent; the molecular origin of this difference is unknown. Type I animal cryptoc...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-03, Vol.7 (1), p.44906-44906, Article 44906 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44906 |
---|---|
container_issue | 1 |
container_start_page | 44906 |
container_title | Scientific reports |
container_volume | 7 |
creator | Kutta, Roger J. Archipowa, Nataliya Johannissen, Linus O. Jones, Alex R. Scrutton, Nigel S. |
description | All cryptochromes are currently classified as flavoproteins. In animals their best-described role is as components of the circadian clock. This circadian function is variable, and can be either light-dependent or -independent; the molecular origin of this difference is unknown. Type I animal cryptochromes are photoreceptors that entrain an organism’s clock to its environment, whereas Type II (including mammals) regulate circadian timing in a light-independent manner. Here, we reveal that, in contrast to Type I, Type II animal cryptochromes lack the structural features to securely bind the photoactive flavin cofactor. We provide a molecular basis for the distinct circadian roles of different animal cryptochromes, which also has significant implications for the putative role of Type II cryptochromes in animal photomagnetoreception. |
doi_str_mv | 10.1038/srep44906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5357904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903378853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-fc74524a276d23784b680238713ce7839191acb42fb37ee545c31ec598ba43203</originalsourceid><addsrcrecordid>eNplkU1LAzEQhoMottQe_ANS8KJCNZ9NchGkWBUKXrTXkE2n7ZbtZk12C_33prSWqnOZgXl4550ZhC4JvieYqYcYoOJc48EJalPMRZ8ySk-P6hbqxrjEKQTVnOhz1KKKEamJaiM-gVBDFmwNvWHYVLV3i-BXEHs2QG8Csc7nuS16o8KufRV8DXkZL9DZzBYRuvvcQZ-j54_ha3_8_vI2fBr3ncC87s-c5IJyS-VgSplUPBsoTJmShDmQimmiiXUZp7OMSQDBhWMEnNAqs5xRzDrocadbNdkKpg7KOtjCVCFf2bAx3ubmd6fMF2bu10YwITXmSeBmLxD8V5OWMas8OigKW4JvoiFKbk0QtUWv_6BL34QyrWeIxizZV4Il6nZHueBjuvzsYIZgs32HObwjsVfH7g_kz_ETcLcDYmqVcwhHI_-pfQPuTZMX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903378853</pqid></control><display><type>article</type><title>Vertebrate Cryptochromes are Vestigial Flavoproteins</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kutta, Roger J. ; Archipowa, Nataliya ; Johannissen, Linus O. ; Jones, Alex R. ; Scrutton, Nigel S.</creator><creatorcontrib>Kutta, Roger J. ; Archipowa, Nataliya ; Johannissen, Linus O. ; Jones, Alex R. ; Scrutton, Nigel S.</creatorcontrib><description>All cryptochromes are currently classified as flavoproteins. In animals their best-described role is as components of the circadian clock. This circadian function is variable, and can be either light-dependent or -independent; the molecular origin of this difference is unknown. Type I animal cryptochromes are photoreceptors that entrain an organism’s clock to its environment, whereas Type II (including mammals) regulate circadian timing in a light-independent manner. Here, we reveal that, in contrast to Type I, Type II animal cryptochromes lack the structural features to securely bind the photoactive flavin cofactor. We provide a molecular basis for the distinct circadian roles of different animal cryptochromes, which also has significant implications for the putative role of Type II cryptochromes in animal photomagnetoreception.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep44906</identifier><identifier>PMID: 28317918</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/612/1225 ; 631/535/1267 ; Amino Acid Sequence ; Amino Acids - chemistry ; Amino Acids - metabolism ; Animals ; Binding Sites ; Circadian rhythm ; Circadian rhythms ; Circular Dichroism ; Cryptochromes ; Cryptochromes - chemistry ; Cryptochromes - genetics ; Cryptochromes - metabolism ; Flavin ; Flavin-Adenine Dinucleotide - chemistry ; Flavin-Adenine Dinucleotide - metabolism ; Flavoproteins ; Flavoproteins - chemistry ; Flavoproteins - genetics ; Flavoproteins - metabolism ; Humanities and Social Sciences ; Molecular Conformation ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; multidisciplinary ; Mutation ; Photoreceptor Cells - metabolism ; Photoreceptors ; Protein Binding ; Science ; Vertebrates - genetics ; Vertebrates - metabolism</subject><ispartof>Scientific reports, 2017-03, Vol.7 (1), p.44906-44906, Article 44906</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-fc74524a276d23784b680238713ce7839191acb42fb37ee545c31ec598ba43203</citedby><cites>FETCH-LOGICAL-c504t-fc74524a276d23784b680238713ce7839191acb42fb37ee545c31ec598ba43203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357904/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357904/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28317918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kutta, Roger J.</creatorcontrib><creatorcontrib>Archipowa, Nataliya</creatorcontrib><creatorcontrib>Johannissen, Linus O.</creatorcontrib><creatorcontrib>Jones, Alex R.</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><title>Vertebrate Cryptochromes are Vestigial Flavoproteins</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>All cryptochromes are currently classified as flavoproteins. In animals their best-described role is as components of the circadian clock. This circadian function is variable, and can be either light-dependent or -independent; the molecular origin of this difference is unknown. Type I animal cryptochromes are photoreceptors that entrain an organism’s clock to its environment, whereas Type II (including mammals) regulate circadian timing in a light-independent manner. Here, we reveal that, in contrast to Type I, Type II animal cryptochromes lack the structural features to securely bind the photoactive flavin cofactor. We provide a molecular basis for the distinct circadian roles of different animal cryptochromes, which also has significant implications for the putative role of Type II cryptochromes in animal photomagnetoreception.</description><subject>631/45/612/1225</subject><subject>631/535/1267</subject><subject>Amino Acid Sequence</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Circular Dichroism</subject><subject>Cryptochromes</subject><subject>Cryptochromes - chemistry</subject><subject>Cryptochromes - genetics</subject><subject>Cryptochromes - metabolism</subject><subject>Flavin</subject><subject>Flavin-Adenine Dinucleotide - chemistry</subject><subject>Flavin-Adenine Dinucleotide - metabolism</subject><subject>Flavoproteins</subject><subject>Flavoproteins - chemistry</subject><subject>Flavoproteins - genetics</subject><subject>Flavoproteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Molecular Conformation</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Photoreceptor Cells - metabolism</subject><subject>Photoreceptors</subject><subject>Protein Binding</subject><subject>Science</subject><subject>Vertebrates - genetics</subject><subject>Vertebrates - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1LAzEQhoMottQe_ANS8KJCNZ9NchGkWBUKXrTXkE2n7ZbtZk12C_33prSWqnOZgXl4550ZhC4JvieYqYcYoOJc48EJalPMRZ8ySk-P6hbqxrjEKQTVnOhz1KKKEamJaiM-gVBDFmwNvWHYVLV3i-BXEHs2QG8Csc7nuS16o8KufRV8DXkZL9DZzBYRuvvcQZ-j54_ha3_8_vI2fBr3ncC87s-c5IJyS-VgSplUPBsoTJmShDmQimmiiXUZp7OMSQDBhWMEnNAqs5xRzDrocadbNdkKpg7KOtjCVCFf2bAx3ubmd6fMF2bu10YwITXmSeBmLxD8V5OWMas8OigKW4JvoiFKbk0QtUWv_6BL34QyrWeIxizZV4Il6nZHueBjuvzsYIZgs32HObwjsVfH7g_kz_ETcLcDYmqVcwhHI_-pfQPuTZMX</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>Kutta, Roger J.</creator><creator>Archipowa, Nataliya</creator><creator>Johannissen, Linus O.</creator><creator>Jones, Alex R.</creator><creator>Scrutton, Nigel S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170320</creationdate><title>Vertebrate Cryptochromes are Vestigial Flavoproteins</title><author>Kutta, Roger J. ; Archipowa, Nataliya ; Johannissen, Linus O. ; Jones, Alex R. ; Scrutton, Nigel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-fc74524a276d23784b680238713ce7839191acb42fb37ee545c31ec598ba43203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/45/612/1225</topic><topic>631/535/1267</topic><topic>Amino Acid Sequence</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Circular Dichroism</topic><topic>Cryptochromes</topic><topic>Cryptochromes - chemistry</topic><topic>Cryptochromes - genetics</topic><topic>Cryptochromes - metabolism</topic><topic>Flavin</topic><topic>Flavin-Adenine Dinucleotide - chemistry</topic><topic>Flavin-Adenine Dinucleotide - metabolism</topic><topic>Flavoproteins</topic><topic>Flavoproteins - chemistry</topic><topic>Flavoproteins - genetics</topic><topic>Flavoproteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Molecular Conformation</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Photoreceptor Cells - metabolism</topic><topic>Photoreceptors</topic><topic>Protein Binding</topic><topic>Science</topic><topic>Vertebrates - genetics</topic><topic>Vertebrates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutta, Roger J.</creatorcontrib><creatorcontrib>Archipowa, Nataliya</creatorcontrib><creatorcontrib>Johannissen, Linus O.</creatorcontrib><creatorcontrib>Jones, Alex R.</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutta, Roger J.</au><au>Archipowa, Nataliya</au><au>Johannissen, Linus O.</au><au>Jones, Alex R.</au><au>Scrutton, Nigel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertebrate Cryptochromes are Vestigial Flavoproteins</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-03-20</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>44906</spage><epage>44906</epage><pages>44906-44906</pages><artnum>44906</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>All cryptochromes are currently classified as flavoproteins. In animals their best-described role is as components of the circadian clock. This circadian function is variable, and can be either light-dependent or -independent; the molecular origin of this difference is unknown. Type I animal cryptochromes are photoreceptors that entrain an organism’s clock to its environment, whereas Type II (including mammals) regulate circadian timing in a light-independent manner. Here, we reveal that, in contrast to Type I, Type II animal cryptochromes lack the structural features to securely bind the photoactive flavin cofactor. We provide a molecular basis for the distinct circadian roles of different animal cryptochromes, which also has significant implications for the putative role of Type II cryptochromes in animal photomagnetoreception.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28317918</pmid><doi>10.1038/srep44906</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-03, Vol.7 (1), p.44906-44906, Article 44906 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5357904 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/45/612/1225 631/535/1267 Amino Acid Sequence Amino Acids - chemistry Amino Acids - metabolism Animals Binding Sites Circadian rhythm Circadian rhythms Circular Dichroism Cryptochromes Cryptochromes - chemistry Cryptochromes - genetics Cryptochromes - metabolism Flavin Flavin-Adenine Dinucleotide - chemistry Flavin-Adenine Dinucleotide - metabolism Flavoproteins Flavoproteins - chemistry Flavoproteins - genetics Flavoproteins - metabolism Humanities and Social Sciences Molecular Conformation Molecular Docking Simulation Molecular Dynamics Simulation multidisciplinary Mutation Photoreceptor Cells - metabolism Photoreceptors Protein Binding Science Vertebrates - genetics Vertebrates - metabolism |
title | Vertebrate Cryptochromes are Vestigial Flavoproteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertebrate%20Cryptochromes%20are%20Vestigial%20Flavoproteins&rft.jtitle=Scientific%20reports&rft.au=Kutta,%20Roger%20J.&rft.date=2017-03-20&rft.volume=7&rft.issue=1&rft.spage=44906&rft.epage=44906&rft.pages=44906-44906&rft.artnum=44906&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep44906&rft_dat=%3Cproquest_pubme%3E1903378853%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903378853&rft_id=info:pmid/28317918&rfr_iscdi=true |