Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease
Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic...
Gespeichert in:
Veröffentlicht in: | Nitric oxide 2011-08, Vol.25 (2), p.81-88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 2 |
container_start_page | 81 |
container_title | Nitric oxide |
container_volume | 25 |
creator | Crabtree, Mark J. Channon, Keith M. |
description | Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of
l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4
[1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between
de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review. |
doi_str_mv | 10.1016/j.niox.2011.04.004 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5357050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1089860311003922</els_id><sourcerecordid>S1089860311003922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoTqdfwAfpF1i9N23XFkSQ4T8Y-KA--RDS5HbL6JKRdMN9e1unQ1-EQA7knHNvfoxdIMQIOL5axNa4j5gDYgxpDJAesBOEohwVY8TDvYZkwE5DWEDnSIrxMRtwzDJIkZ-w95etbecUTIik1ZEntVWNsbPI1VFLrZfzrfauMm7Vkjc26g5Z7bpIY2QT1WurWuPsV3gjg1o30kfaBJKBzthRLZtA59_3kL3d371OHkfT54enye10pDIO7YiDVL2SqCGRKa-LgjKlEKEsSkhAIylJqsornlT5uCrrSkFeJiqrEEueJ0N2s-tdraslaUW227sRK2-W0m-Fk0b8fbFmLmZuI7IkyyGDroDvCpR3IXiq91kE0aMWC9GjFj1qAanoQQ7Z5e-p-8gP285wvTNQ9_eNIS-CMmQVadNhboV25r_-T91Vk4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Crabtree, Mark J. ; Channon, Keith M.</creator><creatorcontrib>Crabtree, Mark J. ; Channon, Keith M.</creatorcontrib><description>Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of
l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4
[1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between
de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.</description><identifier>ISSN: 1089-8603</identifier><identifier>EISSN: 1089-8611</identifier><identifier>DOI: 10.1016/j.niox.2011.04.004</identifier><identifier>PMID: 21550412</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alcohol Oxidoreductases - metabolism ; Animals ; Biological Transport ; Biopterins - analogs & derivatives ; Biopterins - biosynthesis ; Biopterins - metabolism ; Biopterins - pharmacology ; Dihydrofolate reductase ; Dihydropteridine Reductase - metabolism ; Endothelial Cells - drug effects ; eNOS uncoupling ; GTP Cyclohydrolase - metabolism ; Humans ; Methotrexate - pharmacology ; Mice ; Nitric oxide ; Nitric Oxide - metabolism ; Nitric Oxide Synthase - metabolism ; Oxidation-Reduction ; Pterins - pharmacology ; Superoxide ; Tetrahydrobiopterin recycling ; Tetrahydrofolate Dehydrogenase - metabolism ; Vascular Diseases - drug therapy</subject><ispartof>Nitric oxide, 2011-08, Vol.25 (2), p.81-88</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</citedby><cites>FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.niox.2011.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21550412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crabtree, Mark J.</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><title>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</title><title>Nitric oxide</title><addtitle>Nitric Oxide</addtitle><description>Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of
l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4
[1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between
de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.</description><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Animals</subject><subject>Biological Transport</subject><subject>Biopterins - analogs & derivatives</subject><subject>Biopterins - biosynthesis</subject><subject>Biopterins - metabolism</subject><subject>Biopterins - pharmacology</subject><subject>Dihydrofolate reductase</subject><subject>Dihydropteridine Reductase - metabolism</subject><subject>Endothelial Cells - drug effects</subject><subject>eNOS uncoupling</subject><subject>GTP Cyclohydrolase - metabolism</subject><subject>Humans</subject><subject>Methotrexate - pharmacology</subject><subject>Mice</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Pterins - pharmacology</subject><subject>Superoxide</subject><subject>Tetrahydrobiopterin recycling</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Vascular Diseases - drug therapy</subject><issn>1089-8603</issn><issn>1089-8611</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9LwzAUxYMoTqdfwAfpF1i9N23XFkSQ4T8Y-KA--RDS5HbL6JKRdMN9e1unQ1-EQA7knHNvfoxdIMQIOL5axNa4j5gDYgxpDJAesBOEohwVY8TDvYZkwE5DWEDnSIrxMRtwzDJIkZ-w95etbecUTIik1ZEntVWNsbPI1VFLrZfzrfauMm7Vkjc26g5Z7bpIY2QT1WurWuPsV3gjg1o30kfaBJKBzthRLZtA59_3kL3d371OHkfT54enye10pDIO7YiDVL2SqCGRKa-LgjKlEKEsSkhAIylJqsornlT5uCrrSkFeJiqrEEueJ0N2s-tdraslaUW227sRK2-W0m-Fk0b8fbFmLmZuI7IkyyGDroDvCpR3IXiq91kE0aMWC9GjFj1qAanoQQ7Z5e-p-8gP285wvTNQ9_eNIS-CMmQVadNhboV25r_-T91Vk4E</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Crabtree, Mark J.</creator><creator>Channon, Keith M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</title><author>Crabtree, Mark J. ; Channon, Keith M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Animals</topic><topic>Biological Transport</topic><topic>Biopterins - analogs & derivatives</topic><topic>Biopterins - biosynthesis</topic><topic>Biopterins - metabolism</topic><topic>Biopterins - pharmacology</topic><topic>Dihydrofolate reductase</topic><topic>Dihydropteridine Reductase - metabolism</topic><topic>Endothelial Cells - drug effects</topic><topic>eNOS uncoupling</topic><topic>GTP Cyclohydrolase - metabolism</topic><topic>Humans</topic><topic>Methotrexate - pharmacology</topic><topic>Mice</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Pterins - pharmacology</topic><topic>Superoxide</topic><topic>Tetrahydrobiopterin recycling</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Vascular Diseases - drug therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crabtree, Mark J.</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nitric oxide</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crabtree, Mark J.</au><au>Channon, Keith M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</atitle><jtitle>Nitric oxide</jtitle><addtitle>Nitric Oxide</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>25</volume><issue>2</issue><spage>81</spage><epage>88</epage><pages>81-88</pages><issn>1089-8603</issn><eissn>1089-8611</eissn><abstract>Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of
l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4
[1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between
de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21550412</pmid><doi>10.1016/j.niox.2011.04.004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-8603 |
ispartof | Nitric oxide, 2011-08, Vol.25 (2), p.81-88 |
issn | 1089-8603 1089-8611 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5357050 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Alcohol Oxidoreductases - metabolism Animals Biological Transport Biopterins - analogs & derivatives Biopterins - biosynthesis Biopterins - metabolism Biopterins - pharmacology Dihydrofolate reductase Dihydropteridine Reductase - metabolism Endothelial Cells - drug effects eNOS uncoupling GTP Cyclohydrolase - metabolism Humans Methotrexate - pharmacology Mice Nitric oxide Nitric Oxide - metabolism Nitric Oxide Synthase - metabolism Oxidation-Reduction Pterins - pharmacology Superoxide Tetrahydrobiopterin recycling Tetrahydrofolate Dehydrogenase - metabolism Vascular Diseases - drug therapy |
title | Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20recycling%20of%20tetrahydrobiopterin%20in%20endothelial%20function%20and%20vascular%20disease&rft.jtitle=Nitric%20oxide&rft.au=Crabtree,%20Mark%20J.&rft.date=2011-08-01&rft.volume=25&rft.issue=2&rft.spage=81&rft.epage=88&rft.pages=81-88&rft.issn=1089-8603&rft.eissn=1089-8611&rft_id=info:doi/10.1016/j.niox.2011.04.004&rft_dat=%3Celsevier_pubme%3ES1089860311003922%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21550412&rft_els_id=S1089860311003922&rfr_iscdi=true |