Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease

Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nitric oxide 2011-08, Vol.25 (2), p.81-88
Hauptverfasser: Crabtree, Mark J., Channon, Keith M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 2
container_start_page 81
container_title Nitric oxide
container_volume 25
creator Crabtree, Mark J.
Channon, Keith M.
description Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4 [1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.
doi_str_mv 10.1016/j.niox.2011.04.004
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5357050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1089860311003922</els_id><sourcerecordid>S1089860311003922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoTqdfwAfpF1i9N23XFkSQ4T8Y-KA--RDS5HbL6JKRdMN9e1unQ1-EQA7knHNvfoxdIMQIOL5axNa4j5gDYgxpDJAesBOEohwVY8TDvYZkwE5DWEDnSIrxMRtwzDJIkZ-w95etbecUTIik1ZEntVWNsbPI1VFLrZfzrfauMm7Vkjc26g5Z7bpIY2QT1WurWuPsV3gjg1o30kfaBJKBzthRLZtA59_3kL3d371OHkfT54enye10pDIO7YiDVL2SqCGRKa-LgjKlEKEsSkhAIylJqsornlT5uCrrSkFeJiqrEEueJ0N2s-tdraslaUW227sRK2-W0m-Fk0b8fbFmLmZuI7IkyyGDroDvCpR3IXiq91kE0aMWC9GjFj1qAanoQQ7Z5e-p-8gP285wvTNQ9_eNIS-CMmQVadNhboV25r_-T91Vk4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Crabtree, Mark J. ; Channon, Keith M.</creator><creatorcontrib>Crabtree, Mark J. ; Channon, Keith M.</creatorcontrib><description>Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4 [1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.</description><identifier>ISSN: 1089-8603</identifier><identifier>EISSN: 1089-8611</identifier><identifier>DOI: 10.1016/j.niox.2011.04.004</identifier><identifier>PMID: 21550412</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alcohol Oxidoreductases - metabolism ; Animals ; Biological Transport ; Biopterins - analogs &amp; derivatives ; Biopterins - biosynthesis ; Biopterins - metabolism ; Biopterins - pharmacology ; Dihydrofolate reductase ; Dihydropteridine Reductase - metabolism ; Endothelial Cells - drug effects ; eNOS uncoupling ; GTP Cyclohydrolase - metabolism ; Humans ; Methotrexate - pharmacology ; Mice ; Nitric oxide ; Nitric Oxide - metabolism ; Nitric Oxide Synthase - metabolism ; Oxidation-Reduction ; Pterins - pharmacology ; Superoxide ; Tetrahydrobiopterin recycling ; Tetrahydrofolate Dehydrogenase - metabolism ; Vascular Diseases - drug therapy</subject><ispartof>Nitric oxide, 2011-08, Vol.25 (2), p.81-88</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</citedby><cites>FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.niox.2011.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21550412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crabtree, Mark J.</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><title>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</title><title>Nitric oxide</title><addtitle>Nitric Oxide</addtitle><description>Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4 [1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.</description><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Animals</subject><subject>Biological Transport</subject><subject>Biopterins - analogs &amp; derivatives</subject><subject>Biopterins - biosynthesis</subject><subject>Biopterins - metabolism</subject><subject>Biopterins - pharmacology</subject><subject>Dihydrofolate reductase</subject><subject>Dihydropteridine Reductase - metabolism</subject><subject>Endothelial Cells - drug effects</subject><subject>eNOS uncoupling</subject><subject>GTP Cyclohydrolase - metabolism</subject><subject>Humans</subject><subject>Methotrexate - pharmacology</subject><subject>Mice</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Pterins - pharmacology</subject><subject>Superoxide</subject><subject>Tetrahydrobiopterin recycling</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Vascular Diseases - drug therapy</subject><issn>1089-8603</issn><issn>1089-8611</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9LwzAUxYMoTqdfwAfpF1i9N23XFkSQ4T8Y-KA--RDS5HbL6JKRdMN9e1unQ1-EQA7knHNvfoxdIMQIOL5axNa4j5gDYgxpDJAesBOEohwVY8TDvYZkwE5DWEDnSIrxMRtwzDJIkZ-w95etbecUTIik1ZEntVWNsbPI1VFLrZfzrfauMm7Vkjc26g5Z7bpIY2QT1WurWuPsV3gjg1o30kfaBJKBzthRLZtA59_3kL3d371OHkfT54enye10pDIO7YiDVL2SqCGRKa-LgjKlEKEsSkhAIylJqsornlT5uCrrSkFeJiqrEEueJ0N2s-tdraslaUW227sRK2-W0m-Fk0b8fbFmLmZuI7IkyyGDroDvCpR3IXiq91kE0aMWC9GjFj1qAanoQQ7Z5e-p-8gP285wvTNQ9_eNIS-CMmQVadNhboV25r_-T91Vk4E</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Crabtree, Mark J.</creator><creator>Channon, Keith M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110801</creationdate><title>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</title><author>Crabtree, Mark J. ; Channon, Keith M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-20acc520a1d03a42f88e5cc110989030d1ecaecb7b23b76b9fbc0793c5b119273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Animals</topic><topic>Biological Transport</topic><topic>Biopterins - analogs &amp; derivatives</topic><topic>Biopterins - biosynthesis</topic><topic>Biopterins - metabolism</topic><topic>Biopterins - pharmacology</topic><topic>Dihydrofolate reductase</topic><topic>Dihydropteridine Reductase - metabolism</topic><topic>Endothelial Cells - drug effects</topic><topic>eNOS uncoupling</topic><topic>GTP Cyclohydrolase - metabolism</topic><topic>Humans</topic><topic>Methotrexate - pharmacology</topic><topic>Mice</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Pterins - pharmacology</topic><topic>Superoxide</topic><topic>Tetrahydrobiopterin recycling</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Vascular Diseases - drug therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crabtree, Mark J.</creatorcontrib><creatorcontrib>Channon, Keith M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nitric oxide</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crabtree, Mark J.</au><au>Channon, Keith M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease</atitle><jtitle>Nitric oxide</jtitle><addtitle>Nitric Oxide</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>25</volume><issue>2</issue><spage>81</spage><epage>88</epage><pages>81-88</pages><issn>1089-8603</issn><eissn>1089-8611</eissn><abstract>Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of l-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can ‘recycle’ BH2, and thus regenerate BH4 [1,2]. It is therefore likely that net BH4 cellular bioavailability reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21550412</pmid><doi>10.1016/j.niox.2011.04.004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-8603
ispartof Nitric oxide, 2011-08, Vol.25 (2), p.81-88
issn 1089-8603
1089-8611
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5357050
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Alcohol Oxidoreductases - metabolism
Animals
Biological Transport
Biopterins - analogs & derivatives
Biopterins - biosynthesis
Biopterins - metabolism
Biopterins - pharmacology
Dihydrofolate reductase
Dihydropteridine Reductase - metabolism
Endothelial Cells - drug effects
eNOS uncoupling
GTP Cyclohydrolase - metabolism
Humans
Methotrexate - pharmacology
Mice
Nitric oxide
Nitric Oxide - metabolism
Nitric Oxide Synthase - metabolism
Oxidation-Reduction
Pterins - pharmacology
Superoxide
Tetrahydrobiopterin recycling
Tetrahydrofolate Dehydrogenase - metabolism
Vascular Diseases - drug therapy
title Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20recycling%20of%20tetrahydrobiopterin%20in%20endothelial%20function%20and%20vascular%20disease&rft.jtitle=Nitric%20oxide&rft.au=Crabtree,%20Mark%20J.&rft.date=2011-08-01&rft.volume=25&rft.issue=2&rft.spage=81&rft.epage=88&rft.pages=81-88&rft.issn=1089-8603&rft.eissn=1089-8611&rft_id=info:doi/10.1016/j.niox.2011.04.004&rft_dat=%3Celsevier_pubme%3ES1089860311003922%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21550412&rft_els_id=S1089860311003922&rfr_iscdi=true