Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex

Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2017-03, Vol.37 (11), p.2824-2833
Hauptverfasser: Samaha, Jason, Gosseries, Olivia, Postle, Bradley R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2833
container_issue 11
container_start_page 2824
container_title The Journal of neuroscience
container_volume 37
creator Samaha, Jason
Gosseries, Olivia
Postle, Bradley R
description Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.
doi_str_mv 10.1523/JNEUROSCI.3413-16.2017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5354329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1866691736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</originalsourceid><addsrcrecordid>eNqNUU1vEzEUtBCIhsJfqPbIZYO_7b0goZDSVhVBQI7Isr1vg9FmN9jeqvn3OE0bwY2TP97MPM0MQhcEz4mg7N3N5-X66-rb4nrOOGE1kXOKiXqGZmXa1JRj8hzNMFW4llzxM_QqpV8YY1VAL9EZ1UQ1QsgZ-vExpBwGn6tV8qHvbR7jvrqM8HuCwQdI1XpoIfYBquW9D9m60Ie8r8auupq2dqhW3odd-e8rO7TVFxsDHB6LMWa4f41edLZP8ObxPEfry-X3xVV9u_p0vfhwW3shVK6VUph3tHHEa4G9srrjHKimXctthzk0gBvcSc89ON1q76S3zjpQrdWcKHaO3h91d5PbQuthyNH2ZhfD1sa9GW0w_06G8NNsxjsjmOCMNkWAHQWK0Q2YMbpg7ugD8eE-9RtjvXFgKJXaUKY1Z4X19nFtHEteKZttSB5KigOMUzJEl5wFa-j_QKWUTbEiC1QeoT6OKUXoTj4INofyzal8cyjfEGkO5Rfixd8pnGhPbbM_9ZWuJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866691736</pqid></control><display><type>article</type><title>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Samaha, Jason ; Gosseries, Olivia ; Postle, Bradley R</creator><creatorcontrib>Samaha, Jason ; Gosseries, Olivia ; Postle, Bradley R</creatorcontrib><description>Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (&gt;300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3413-16.2017</identifier><identifier>PMID: 28179556</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Adult ; Alpha Rhythm - physiology ; Biological Clocks - physiology ; cortical excitability ; Cortical Excitability - physiology ; Female ; Humans ; Male ; Nerve Net - physiology ; Neurosciences &amp; behavior ; Neurosciences &amp; comportement ; occipital ; Occipital Lobe - physiology ; oscillations ; parietal ; Parietal Lobe - physiology ; phosphenes ; Phosphenes - physiology ; Sciences sociales &amp; comportementales, psychologie ; Social &amp; behavioral sciences, psychology ; Transcranial Magnetic Stimulation - methods ; visual perception ; Young Adult</subject><ispartof>The Journal of neuroscience, 2017-03, Vol.37 (11), p.2824-2833</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/372824-10$15.00/0.</rights><rights>Copyright © 2017 the authors 0270-6474/17/372824-10$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</citedby><cites>FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</cites><orcidid>0000-0001-8010-5993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354329/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354329/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28179556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samaha, Jason</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Postle, Bradley R</creatorcontrib><title>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (&gt;300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.</description><subject>Action Potentials - physiology</subject><subject>Adult</subject><subject>Alpha Rhythm - physiology</subject><subject>Biological Clocks - physiology</subject><subject>cortical excitability</subject><subject>Cortical Excitability - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Neurosciences &amp; behavior</subject><subject>Neurosciences &amp; comportement</subject><subject>occipital</subject><subject>Occipital Lobe - physiology</subject><subject>oscillations</subject><subject>parietal</subject><subject>Parietal Lobe - physiology</subject><subject>phosphenes</subject><subject>Phosphenes - physiology</subject><subject>Sciences sociales &amp; comportementales, psychologie</subject><subject>Social &amp; behavioral sciences, psychology</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>visual perception</subject><subject>Young Adult</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1vEzEUtBCIhsJfqPbIZYO_7b0goZDSVhVBQI7Isr1vg9FmN9jeqvn3OE0bwY2TP97MPM0MQhcEz4mg7N3N5-X66-rb4nrOOGE1kXOKiXqGZmXa1JRj8hzNMFW4llzxM_QqpV8YY1VAL9EZ1UQ1QsgZ-vExpBwGn6tV8qHvbR7jvrqM8HuCwQdI1XpoIfYBquW9D9m60Ie8r8auupq2dqhW3odd-e8rO7TVFxsDHB6LMWa4f41edLZP8ObxPEfry-X3xVV9u_p0vfhwW3shVK6VUph3tHHEa4G9srrjHKimXctthzk0gBvcSc89ON1q76S3zjpQrdWcKHaO3h91d5PbQuthyNH2ZhfD1sa9GW0w_06G8NNsxjsjmOCMNkWAHQWK0Q2YMbpg7ugD8eE-9RtjvXFgKJXaUKY1Z4X19nFtHEteKZttSB5KigOMUzJEl5wFa-j_QKWUTbEiC1QeoT6OKUXoTj4INofyzal8cyjfEGkO5Rfixd8pnGhPbbM_9ZWuJw</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Samaha, Jason</creator><creator>Gosseries, Olivia</creator><creator>Postle, Bradley R</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>Q33</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8010-5993</orcidid></search><sort><creationdate>20170315</creationdate><title>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</title><author>Samaha, Jason ; Gosseries, Olivia ; Postle, Bradley R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Adult</topic><topic>Alpha Rhythm - physiology</topic><topic>Biological Clocks - physiology</topic><topic>cortical excitability</topic><topic>Cortical Excitability - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Neurosciences &amp; behavior</topic><topic>Neurosciences &amp; comportement</topic><topic>occipital</topic><topic>Occipital Lobe - physiology</topic><topic>oscillations</topic><topic>parietal</topic><topic>Parietal Lobe - physiology</topic><topic>phosphenes</topic><topic>Phosphenes - physiology</topic><topic>Sciences sociales &amp; comportementales, psychologie</topic><topic>Social &amp; behavioral sciences, psychology</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>visual perception</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samaha, Jason</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Postle, Bradley R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samaha, Jason</au><au>Gosseries, Olivia</au><au>Postle, Bradley R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-03-15</date><risdate>2017</risdate><volume>37</volume><issue>11</issue><spage>2824</spage><epage>2833</epage><pages>2824-2833</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (&gt;300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>28179556</pmid><doi>10.1523/JNEUROSCI.3413-16.2017</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8010-5993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2017-03, Vol.37 (11), p.2824-2833
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5354329
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action Potentials - physiology
Adult
Alpha Rhythm - physiology
Biological Clocks - physiology
cortical excitability
Cortical Excitability - physiology
Female
Humans
Male
Nerve Net - physiology
Neurosciences & behavior
Neurosciences & comportement
occipital
Occipital Lobe - physiology
oscillations
parietal
Parietal Lobe - physiology
phosphenes
Phosphenes - physiology
Sciences sociales & comportementales, psychologie
Social & behavioral sciences, psychology
Transcranial Magnetic Stimulation - methods
visual perception
Young Adult
title Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20Oscillatory%20Frequencies%20Underlie%20Excitability%20of%20Human%20Occipital%20and%20Parietal%20Cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Samaha,%20Jason&rft.date=2017-03-15&rft.volume=37&rft.issue=11&rft.spage=2824&rft.epage=2833&rft.pages=2824-2833&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3413-16.2017&rft_dat=%3Cproquest_pubme%3E1866691736%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866691736&rft_id=info:pmid/28179556&rfr_iscdi=true