Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex
Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphen...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2017-03, Vol.37 (11), p.2824-2833 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2833 |
---|---|
container_issue | 11 |
container_start_page | 2824 |
container_title | The Journal of neuroscience |
container_volume | 37 |
creator | Samaha, Jason Gosseries, Olivia Postle, Bradley R |
description | Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability.
Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands. |
doi_str_mv | 10.1523/JNEUROSCI.3413-16.2017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5354329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1866691736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</originalsourceid><addsrcrecordid>eNqNUU1vEzEUtBCIhsJfqPbIZYO_7b0goZDSVhVBQI7Isr1vg9FmN9jeqvn3OE0bwY2TP97MPM0MQhcEz4mg7N3N5-X66-rb4nrOOGE1kXOKiXqGZmXa1JRj8hzNMFW4llzxM_QqpV8YY1VAL9EZ1UQ1QsgZ-vExpBwGn6tV8qHvbR7jvrqM8HuCwQdI1XpoIfYBquW9D9m60Ie8r8auupq2dqhW3odd-e8rO7TVFxsDHB6LMWa4f41edLZP8ObxPEfry-X3xVV9u_p0vfhwW3shVK6VUph3tHHEa4G9srrjHKimXctthzk0gBvcSc89ON1q76S3zjpQrdWcKHaO3h91d5PbQuthyNH2ZhfD1sa9GW0w_06G8NNsxjsjmOCMNkWAHQWK0Q2YMbpg7ugD8eE-9RtjvXFgKJXaUKY1Z4X19nFtHEteKZttSB5KigOMUzJEl5wFa-j_QKWUTbEiC1QeoT6OKUXoTj4INofyzal8cyjfEGkO5Rfixd8pnGhPbbM_9ZWuJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866691736</pqid></control><display><type>article</type><title>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Samaha, Jason ; Gosseries, Olivia ; Postle, Bradley R</creator><creatorcontrib>Samaha, Jason ; Gosseries, Olivia ; Postle, Bradley R</creatorcontrib><description>Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability.
Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3413-16.2017</identifier><identifier>PMID: 28179556</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Adult ; Alpha Rhythm - physiology ; Biological Clocks - physiology ; cortical excitability ; Cortical Excitability - physiology ; Female ; Humans ; Male ; Nerve Net - physiology ; Neurosciences & behavior ; Neurosciences & comportement ; occipital ; Occipital Lobe - physiology ; oscillations ; parietal ; Parietal Lobe - physiology ; phosphenes ; Phosphenes - physiology ; Sciences sociales & comportementales, psychologie ; Social & behavioral sciences, psychology ; Transcranial Magnetic Stimulation - methods ; visual perception ; Young Adult</subject><ispartof>The Journal of neuroscience, 2017-03, Vol.37 (11), p.2824-2833</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/372824-10$15.00/0.</rights><rights>Copyright © 2017 the authors 0270-6474/17/372824-10$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</citedby><cites>FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</cites><orcidid>0000-0001-8010-5993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354329/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354329/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28179556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samaha, Jason</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Postle, Bradley R</creatorcontrib><title>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability.
Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.</description><subject>Action Potentials - physiology</subject><subject>Adult</subject><subject>Alpha Rhythm - physiology</subject><subject>Biological Clocks - physiology</subject><subject>cortical excitability</subject><subject>Cortical Excitability - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Neurosciences & behavior</subject><subject>Neurosciences & comportement</subject><subject>occipital</subject><subject>Occipital Lobe - physiology</subject><subject>oscillations</subject><subject>parietal</subject><subject>Parietal Lobe - physiology</subject><subject>phosphenes</subject><subject>Phosphenes - physiology</subject><subject>Sciences sociales & comportementales, psychologie</subject><subject>Social & behavioral sciences, psychology</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>visual perception</subject><subject>Young Adult</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1vEzEUtBCIhsJfqPbIZYO_7b0goZDSVhVBQI7Isr1vg9FmN9jeqvn3OE0bwY2TP97MPM0MQhcEz4mg7N3N5-X66-rb4nrOOGE1kXOKiXqGZmXa1JRj8hzNMFW4llzxM_QqpV8YY1VAL9EZ1UQ1QsgZ-vExpBwGn6tV8qHvbR7jvrqM8HuCwQdI1XpoIfYBquW9D9m60Ie8r8auupq2dqhW3odd-e8rO7TVFxsDHB6LMWa4f41edLZP8ObxPEfry-X3xVV9u_p0vfhwW3shVK6VUph3tHHEa4G9srrjHKimXctthzk0gBvcSc89ON1q76S3zjpQrdWcKHaO3h91d5PbQuthyNH2ZhfD1sa9GW0w_06G8NNsxjsjmOCMNkWAHQWK0Q2YMbpg7ugD8eE-9RtjvXFgKJXaUKY1Z4X19nFtHEteKZttSB5KigOMUzJEl5wFa-j_QKWUTbEiC1QeoT6OKUXoTj4INofyzal8cyjfEGkO5Rfixd8pnGhPbbM_9ZWuJw</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Samaha, Jason</creator><creator>Gosseries, Olivia</creator><creator>Postle, Bradley R</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>Q33</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8010-5993</orcidid></search><sort><creationdate>20170315</creationdate><title>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</title><author>Samaha, Jason ; Gosseries, Olivia ; Postle, Bradley R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-77704f29b1c850c7a8f44e282fd4af04e9e090f6c4ceb8d8cb6cababe7da84173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Adult</topic><topic>Alpha Rhythm - physiology</topic><topic>Biological Clocks - physiology</topic><topic>cortical excitability</topic><topic>Cortical Excitability - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Neurosciences & behavior</topic><topic>Neurosciences & comportement</topic><topic>occipital</topic><topic>Occipital Lobe - physiology</topic><topic>oscillations</topic><topic>parietal</topic><topic>Parietal Lobe - physiology</topic><topic>phosphenes</topic><topic>Phosphenes - physiology</topic><topic>Sciences sociales & comportementales, psychologie</topic><topic>Social & behavioral sciences, psychology</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>visual perception</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samaha, Jason</creatorcontrib><creatorcontrib>Gosseries, Olivia</creatorcontrib><creatorcontrib>Postle, Bradley R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samaha, Jason</au><au>Gosseries, Olivia</au><au>Postle, Bradley R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-03-15</date><risdate>2017</risdate><volume>37</volume><issue>11</issue><spage>2824</spage><epage>2833</epage><pages>2824-2833</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability.
Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>28179556</pmid><doi>10.1523/JNEUROSCI.3413-16.2017</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8010-5993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2017-03, Vol.37 (11), p.2824-2833 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5354329 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Action Potentials - physiology Adult Alpha Rhythm - physiology Biological Clocks - physiology cortical excitability Cortical Excitability - physiology Female Humans Male Nerve Net - physiology Neurosciences & behavior Neurosciences & comportement occipital Occipital Lobe - physiology oscillations parietal Parietal Lobe - physiology phosphenes Phosphenes - physiology Sciences sociales & comportementales, psychologie Social & behavioral sciences, psychology Transcranial Magnetic Stimulation - methods visual perception Young Adult |
title | Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20Oscillatory%20Frequencies%20Underlie%20Excitability%20of%20Human%20Occipital%20and%20Parietal%20Cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Samaha,%20Jason&rft.date=2017-03-15&rft.volume=37&rft.issue=11&rft.spage=2824&rft.epage=2833&rft.pages=2824-2833&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3413-16.2017&rft_dat=%3Cproquest_pubme%3E1866691736%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866691736&rft_id=info:pmid/28179556&rfr_iscdi=true |