The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which tap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-03, Vol.7 (1), p.44611-44611, Article 44611
Hauptverfasser: Sklodowski, Kamil, Riedelsberger, Janin, Raddatz, Natalia, Riadi, Gonzalo, Caballero, Julio, Chérel, Isabelle, Schulze, Waltraud, Graf, Alexander, Dreyer, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44611
container_issue 1
container_start_page 44611
container_title Scientific reports
container_volume 7
creator Sklodowski, Kamil
Riedelsberger, Janin
Raddatz, Natalia
Riadi, Gonzalo
Caballero, Julio
Chérel, Isabelle
Schulze, Waltraud
Graf, Alexander
Dreyer, Ingo
description The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.
doi_str_mv 10.1038/srep44611
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5353636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903379192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</originalsourceid><addsrcrecordid>eNplkUtvEzEUhS0EolXogj-ARmIDSAN-PzZIUdUSRCokFFYsLM_MTWbayXiwPan673GVEtJiL2z5fvcc2weh1wR_JJjpTzHAyLkk5Bk6pZiLkjJKnx_tT9BZjNc4D0ENJ-YlOqGaYUyEPkW_Vi0UAWoYkw9l391AMUaYGn_TDS5CcfVjQYpuSBBcnWJx26W2SLll5_vkNlBuXIKmGH1yMXbTtqhbNwzQF_NvK_oKvVi7PsLZwzpDPy8vVueLcvn9y9fz-bKsuaKpBCIdGAUE80aCYlg3DTMAdbWWzCjJ142oHVcVU7KirmqcqjSmSkgiKGeMzdDnve44VVtoahhScL0dQ7d14c5619nHlaFr7cbvrGCCyTxn6P1eoH3Stpgv7f0ZJhILo9WOZPbdg1nwvyeIyW67WEPfuwH8FC3RShPNpOEZffsEvfZTGPJXWGIwY8oQQ_-Z18HHHOb6cAOC7X3C9pBwZt8cv_RA_s0zAx_2QMylYQPhyPI_tT9Dfa7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903379192</pqid></control><display><type>article</type><title>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sklodowski, Kamil ; Riedelsberger, Janin ; Raddatz, Natalia ; Riadi, Gonzalo ; Caballero, Julio ; Chérel, Isabelle ; Schulze, Waltraud ; Graf, Alexander ; Dreyer, Ingo</creator><creatorcontrib>Sklodowski, Kamil ; Riedelsberger, Janin ; Raddatz, Natalia ; Riadi, Gonzalo ; Caballero, Julio ; Chérel, Isabelle ; Schulze, Waltraud ; Graf, Alexander ; Dreyer, Ingo</creatorcontrib><description>The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep44611</identifier><identifier>PMID: 28300158</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 14/33 ; 14/35 ; 38/111 ; 631/449/2675 ; 631/449/448/2651 ; 82/58 ; AKT2 protein ; Amino Acid Sequence ; Animals ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biocatalysis ; Energy ; Fluorescence Resonance Energy Transfer ; Gene Expression Regulation, Plant ; Gene Knockout Techniques ; Humanities and Social Sciences ; Kinases ; Life Sciences ; multidisciplinary ; Plant Cells - metabolism ; Post-translation ; Potassium ; Potassium channels (voltage-gated) ; Potassium Channels - metabolism ; Protein Binding ; Protein Kinases - metabolism ; Recombinant Fusion Proteins - metabolism ; Reproducibility of Results ; Saccharomyces cerevisiae - metabolism ; Science ; Translation ; Transport processes ; Unloading ; Xenopus ; Yeasts</subject><ispartof>Scientific reports, 2017-03, Vol.7 (1), p.44611-44611, Article 44611</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><rights>Attribution</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</citedby><cites>FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</cites><orcidid>0000-0001-8007-7099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353636/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353636/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28300158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01605987$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sklodowski, Kamil</creatorcontrib><creatorcontrib>Riedelsberger, Janin</creatorcontrib><creatorcontrib>Raddatz, Natalia</creatorcontrib><creatorcontrib>Riadi, Gonzalo</creatorcontrib><creatorcontrib>Caballero, Julio</creatorcontrib><creatorcontrib>Chérel, Isabelle</creatorcontrib><creatorcontrib>Schulze, Waltraud</creatorcontrib><creatorcontrib>Graf, Alexander</creatorcontrib><creatorcontrib>Dreyer, Ingo</creatorcontrib><title>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.</description><subject>119/118</subject><subject>14/33</subject><subject>14/35</subject><subject>38/111</subject><subject>631/449/2675</subject><subject>631/449/448/2651</subject><subject>82/58</subject><subject>AKT2 protein</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biocatalysis</subject><subject>Energy</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Knockout Techniques</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>multidisciplinary</subject><subject>Plant Cells - metabolism</subject><subject>Post-translation</subject><subject>Potassium</subject><subject>Potassium channels (voltage-gated)</subject><subject>Potassium Channels - metabolism</subject><subject>Protein Binding</subject><subject>Protein Kinases - metabolism</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science</subject><subject>Translation</subject><subject>Transport processes</subject><subject>Unloading</subject><subject>Xenopus</subject><subject>Yeasts</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtvEzEUhS0EolXogj-ARmIDSAN-PzZIUdUSRCokFFYsLM_MTWbayXiwPan673GVEtJiL2z5fvcc2weh1wR_JJjpTzHAyLkk5Bk6pZiLkjJKnx_tT9BZjNc4D0ENJ-YlOqGaYUyEPkW_Vi0UAWoYkw9l391AMUaYGn_TDS5CcfVjQYpuSBBcnWJx26W2SLll5_vkNlBuXIKmGH1yMXbTtqhbNwzQF_NvK_oKvVi7PsLZwzpDPy8vVueLcvn9y9fz-bKsuaKpBCIdGAUE80aCYlg3DTMAdbWWzCjJ142oHVcVU7KirmqcqjSmSkgiKGeMzdDnve44VVtoahhScL0dQ7d14c5619nHlaFr7cbvrGCCyTxn6P1eoH3Stpgv7f0ZJhILo9WOZPbdg1nwvyeIyW67WEPfuwH8FC3RShPNpOEZffsEvfZTGPJXWGIwY8oQQ_-Z18HHHOb6cAOC7X3C9pBwZt8cv_RA_s0zAx_2QMylYQPhyPI_tT9Dfa7Q</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Sklodowski, Kamil</creator><creator>Riedelsberger, Janin</creator><creator>Raddatz, Natalia</creator><creator>Riadi, Gonzalo</creator><creator>Caballero, Julio</creator><creator>Chérel, Isabelle</creator><creator>Schulze, Waltraud</creator><creator>Graf, Alexander</creator><creator>Dreyer, Ingo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8007-7099</orcidid></search><sort><creationdate>20170316</creationdate><title>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</title><author>Sklodowski, Kamil ; Riedelsberger, Janin ; Raddatz, Natalia ; Riadi, Gonzalo ; Caballero, Julio ; Chérel, Isabelle ; Schulze, Waltraud ; Graf, Alexander ; Dreyer, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>14/33</topic><topic>14/35</topic><topic>38/111</topic><topic>631/449/2675</topic><topic>631/449/448/2651</topic><topic>82/58</topic><topic>AKT2 protein</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biocatalysis</topic><topic>Energy</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Knockout Techniques</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>multidisciplinary</topic><topic>Plant Cells - metabolism</topic><topic>Post-translation</topic><topic>Potassium</topic><topic>Potassium channels (voltage-gated)</topic><topic>Potassium Channels - metabolism</topic><topic>Protein Binding</topic><topic>Protein Kinases - metabolism</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science</topic><topic>Translation</topic><topic>Transport processes</topic><topic>Unloading</topic><topic>Xenopus</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sklodowski, Kamil</creatorcontrib><creatorcontrib>Riedelsberger, Janin</creatorcontrib><creatorcontrib>Raddatz, Natalia</creatorcontrib><creatorcontrib>Riadi, Gonzalo</creatorcontrib><creatorcontrib>Caballero, Julio</creatorcontrib><creatorcontrib>Chérel, Isabelle</creatorcontrib><creatorcontrib>Schulze, Waltraud</creatorcontrib><creatorcontrib>Graf, Alexander</creatorcontrib><creatorcontrib>Dreyer, Ingo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sklodowski, Kamil</au><au>Riedelsberger, Janin</au><au>Raddatz, Natalia</au><au>Riadi, Gonzalo</au><au>Caballero, Julio</au><au>Chérel, Isabelle</au><au>Schulze, Waltraud</au><au>Graf, Alexander</au><au>Dreyer, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-03-16</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>44611</spage><epage>44611</epage><pages>44611-44611</pages><artnum>44611</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28300158</pmid><doi>10.1038/srep44611</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8007-7099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-03, Vol.7 (1), p.44611-44611, Article 44611
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5353636
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 119/118
14/33
14/35
38/111
631/449/2675
631/449/448/2651
82/58
AKT2 protein
Amino Acid Sequence
Animals
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biocatalysis
Energy
Fluorescence Resonance Energy Transfer
Gene Expression Regulation, Plant
Gene Knockout Techniques
Humanities and Social Sciences
Kinases
Life Sciences
multidisciplinary
Plant Cells - metabolism
Post-translation
Potassium
Potassium channels (voltage-gated)
Potassium Channels - metabolism
Protein Binding
Protein Kinases - metabolism
Recombinant Fusion Proteins - metabolism
Reproducibility of Results
Saccharomyces cerevisiae - metabolism
Science
Translation
Transport processes
Unloading
Xenopus
Yeasts
title The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20receptor-like%20pseudokinase%20MRH1%20interacts%20with%20the%20voltage-gated%20potassium%20channel%20AKT2&rft.jtitle=Scientific%20reports&rft.au=Sklodowski,%20Kamil&rft.date=2017-03-16&rft.volume=7&rft.issue=1&rft.spage=44611&rft.epage=44611&rft.pages=44611-44611&rft.artnum=44611&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep44611&rft_dat=%3Cproquest_pubme%3E1903379192%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903379192&rft_id=info:pmid/28300158&rfr_iscdi=true