The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2
The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H + -ATPase-energized K + uptake. Moreover, through reversible post-translational modifications it can also function as an open, K + -selective channel, which tap...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-03, Vol.7 (1), p.44611-44611, Article 44611 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44611 |
---|---|
container_issue | 1 |
container_start_page | 44611 |
container_title | Scientific reports |
container_volume | 7 |
creator | Sklodowski, Kamil Riedelsberger, Janin Raddatz, Natalia Riadi, Gonzalo Caballero, Julio Chérel, Isabelle Schulze, Waltraud Graf, Alexander Dreyer, Ingo |
description | The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H
+
-ATPase-energized K
+
uptake. Moreover, through reversible post-translational modifications it can also function as an open, K
+
-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the
mrh1-1
knockout plant mirrors that of
akt2
knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals. |
doi_str_mv | 10.1038/srep44611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5353636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903379192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</originalsourceid><addsrcrecordid>eNplkUtvEzEUhS0EolXogj-ARmIDSAN-PzZIUdUSRCokFFYsLM_MTWbayXiwPan673GVEtJiL2z5fvcc2weh1wR_JJjpTzHAyLkk5Bk6pZiLkjJKnx_tT9BZjNc4D0ENJ-YlOqGaYUyEPkW_Vi0UAWoYkw9l391AMUaYGn_TDS5CcfVjQYpuSBBcnWJx26W2SLll5_vkNlBuXIKmGH1yMXbTtqhbNwzQF_NvK_oKvVi7PsLZwzpDPy8vVueLcvn9y9fz-bKsuaKpBCIdGAUE80aCYlg3DTMAdbWWzCjJ142oHVcVU7KirmqcqjSmSkgiKGeMzdDnve44VVtoahhScL0dQ7d14c5619nHlaFr7cbvrGCCyTxn6P1eoH3Stpgv7f0ZJhILo9WOZPbdg1nwvyeIyW67WEPfuwH8FC3RShPNpOEZffsEvfZTGPJXWGIwY8oQQ_-Z18HHHOb6cAOC7X3C9pBwZt8cv_RA_s0zAx_2QMylYQPhyPI_tT9Dfa7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903379192</pqid></control><display><type>article</type><title>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sklodowski, Kamil ; Riedelsberger, Janin ; Raddatz, Natalia ; Riadi, Gonzalo ; Caballero, Julio ; Chérel, Isabelle ; Schulze, Waltraud ; Graf, Alexander ; Dreyer, Ingo</creator><creatorcontrib>Sklodowski, Kamil ; Riedelsberger, Janin ; Raddatz, Natalia ; Riadi, Gonzalo ; Caballero, Julio ; Chérel, Isabelle ; Schulze, Waltraud ; Graf, Alexander ; Dreyer, Ingo</creatorcontrib><description>The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H
+
-ATPase-energized K
+
uptake. Moreover, through reversible post-translational modifications it can also function as an open, K
+
-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the
mrh1-1
knockout plant mirrors that of
akt2
knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep44611</identifier><identifier>PMID: 28300158</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 14/33 ; 14/35 ; 38/111 ; 631/449/2675 ; 631/449/448/2651 ; 82/58 ; AKT2 protein ; Amino Acid Sequence ; Animals ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biocatalysis ; Energy ; Fluorescence Resonance Energy Transfer ; Gene Expression Regulation, Plant ; Gene Knockout Techniques ; Humanities and Social Sciences ; Kinases ; Life Sciences ; multidisciplinary ; Plant Cells - metabolism ; Post-translation ; Potassium ; Potassium channels (voltage-gated) ; Potassium Channels - metabolism ; Protein Binding ; Protein Kinases - metabolism ; Recombinant Fusion Proteins - metabolism ; Reproducibility of Results ; Saccharomyces cerevisiae - metabolism ; Science ; Translation ; Transport processes ; Unloading ; Xenopus ; Yeasts</subject><ispartof>Scientific reports, 2017-03, Vol.7 (1), p.44611-44611, Article 44611</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><rights>Attribution</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</citedby><cites>FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</cites><orcidid>0000-0001-8007-7099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353636/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353636/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28300158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01605987$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sklodowski, Kamil</creatorcontrib><creatorcontrib>Riedelsberger, Janin</creatorcontrib><creatorcontrib>Raddatz, Natalia</creatorcontrib><creatorcontrib>Riadi, Gonzalo</creatorcontrib><creatorcontrib>Caballero, Julio</creatorcontrib><creatorcontrib>Chérel, Isabelle</creatorcontrib><creatorcontrib>Schulze, Waltraud</creatorcontrib><creatorcontrib>Graf, Alexander</creatorcontrib><creatorcontrib>Dreyer, Ingo</creatorcontrib><title>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H
+
-ATPase-energized K
+
uptake. Moreover, through reversible post-translational modifications it can also function as an open, K
+
-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the
mrh1-1
knockout plant mirrors that of
akt2
knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.</description><subject>119/118</subject><subject>14/33</subject><subject>14/35</subject><subject>38/111</subject><subject>631/449/2675</subject><subject>631/449/448/2651</subject><subject>82/58</subject><subject>AKT2 protein</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biocatalysis</subject><subject>Energy</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Knockout Techniques</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>multidisciplinary</subject><subject>Plant Cells - metabolism</subject><subject>Post-translation</subject><subject>Potassium</subject><subject>Potassium channels (voltage-gated)</subject><subject>Potassium Channels - metabolism</subject><subject>Protein Binding</subject><subject>Protein Kinases - metabolism</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science</subject><subject>Translation</subject><subject>Transport processes</subject><subject>Unloading</subject><subject>Xenopus</subject><subject>Yeasts</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtvEzEUhS0EolXogj-ARmIDSAN-PzZIUdUSRCokFFYsLM_MTWbayXiwPan673GVEtJiL2z5fvcc2weh1wR_JJjpTzHAyLkk5Bk6pZiLkjJKnx_tT9BZjNc4D0ENJ-YlOqGaYUyEPkW_Vi0UAWoYkw9l391AMUaYGn_TDS5CcfVjQYpuSBBcnWJx26W2SLll5_vkNlBuXIKmGH1yMXbTtqhbNwzQF_NvK_oKvVi7PsLZwzpDPy8vVueLcvn9y9fz-bKsuaKpBCIdGAUE80aCYlg3DTMAdbWWzCjJ142oHVcVU7KirmqcqjSmSkgiKGeMzdDnve44VVtoahhScL0dQ7d14c5619nHlaFr7cbvrGCCyTxn6P1eoH3Stpgv7f0ZJhILo9WOZPbdg1nwvyeIyW67WEPfuwH8FC3RShPNpOEZffsEvfZTGPJXWGIwY8oQQ_-Z18HHHOb6cAOC7X3C9pBwZt8cv_RA_s0zAx_2QMylYQPhyPI_tT9Dfa7Q</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Sklodowski, Kamil</creator><creator>Riedelsberger, Janin</creator><creator>Raddatz, Natalia</creator><creator>Riadi, Gonzalo</creator><creator>Caballero, Julio</creator><creator>Chérel, Isabelle</creator><creator>Schulze, Waltraud</creator><creator>Graf, Alexander</creator><creator>Dreyer, Ingo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8007-7099</orcidid></search><sort><creationdate>20170316</creationdate><title>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</title><author>Sklodowski, Kamil ; Riedelsberger, Janin ; Raddatz, Natalia ; Riadi, Gonzalo ; Caballero, Julio ; Chérel, Isabelle ; Schulze, Waltraud ; Graf, Alexander ; Dreyer, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-e16ae97e104d6e7308dd39eecbf639764fd5ca47b376b2abda7b8027561524333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>14/33</topic><topic>14/35</topic><topic>38/111</topic><topic>631/449/2675</topic><topic>631/449/448/2651</topic><topic>82/58</topic><topic>AKT2 protein</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biocatalysis</topic><topic>Energy</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Knockout Techniques</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>multidisciplinary</topic><topic>Plant Cells - metabolism</topic><topic>Post-translation</topic><topic>Potassium</topic><topic>Potassium channels (voltage-gated)</topic><topic>Potassium Channels - metabolism</topic><topic>Protein Binding</topic><topic>Protein Kinases - metabolism</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science</topic><topic>Translation</topic><topic>Transport processes</topic><topic>Unloading</topic><topic>Xenopus</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sklodowski, Kamil</creatorcontrib><creatorcontrib>Riedelsberger, Janin</creatorcontrib><creatorcontrib>Raddatz, Natalia</creatorcontrib><creatorcontrib>Riadi, Gonzalo</creatorcontrib><creatorcontrib>Caballero, Julio</creatorcontrib><creatorcontrib>Chérel, Isabelle</creatorcontrib><creatorcontrib>Schulze, Waltraud</creatorcontrib><creatorcontrib>Graf, Alexander</creatorcontrib><creatorcontrib>Dreyer, Ingo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sklodowski, Kamil</au><au>Riedelsberger, Janin</au><au>Raddatz, Natalia</au><au>Riadi, Gonzalo</au><au>Caballero, Julio</au><au>Chérel, Isabelle</au><au>Schulze, Waltraud</au><au>Graf, Alexander</au><au>Dreyer, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-03-16</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>44611</spage><epage>44611</epage><pages>44611-44611</pages><artnum>44611</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H
+
-ATPase-energized K
+
uptake. Moreover, through reversible post-translational modifications it can also function as an open, K
+
-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the
mrh1-1
knockout plant mirrors that of
akt2
knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28300158</pmid><doi>10.1038/srep44611</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8007-7099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-03, Vol.7 (1), p.44611-44611, Article 44611 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5353636 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 119/118 14/33 14/35 38/111 631/449/2675 631/449/448/2651 82/58 AKT2 protein Amino Acid Sequence Animals Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biocatalysis Energy Fluorescence Resonance Energy Transfer Gene Expression Regulation, Plant Gene Knockout Techniques Humanities and Social Sciences Kinases Life Sciences multidisciplinary Plant Cells - metabolism Post-translation Potassium Potassium channels (voltage-gated) Potassium Channels - metabolism Protein Binding Protein Kinases - metabolism Recombinant Fusion Proteins - metabolism Reproducibility of Results Saccharomyces cerevisiae - metabolism Science Translation Transport processes Unloading Xenopus Yeasts |
title | The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20receptor-like%20pseudokinase%20MRH1%20interacts%20with%20the%20voltage-gated%20potassium%20channel%20AKT2&rft.jtitle=Scientific%20reports&rft.au=Sklodowski,%20Kamil&rft.date=2017-03-16&rft.volume=7&rft.issue=1&rft.spage=44611&rft.epage=44611&rft.pages=44611-44611&rft.artnum=44611&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep44611&rft_dat=%3Cproquest_pubme%3E1903379192%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903379192&rft_id=info:pmid/28300158&rfr_iscdi=true |