Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation

In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomechanics and modeling in mechanobiology 2017-04, Vol.16 (2), p.721-729
Hauptverfasser: Pluijmert, Marieke, Delhaas, Tammo, de la Parra, Adrián Flores, Kroon, Wilco, Prinzen, Frits W., Bovendeerd, Peter H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 2
container_start_page 721
container_title Biomechanics and modeling in mechanobiology
container_volume 16
creator Pluijmert, Marieke
Delhaas, Tammo
de la Parra, Adrián Flores
Kroon, Wilco
Prinzen, Frits W.
Bovendeerd, Peter H. M.
description In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of ∼ 8 ∘ predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work ( ∼ 18 % ) and in global pump work ( ∼ 17 % ) in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.
doi_str_mv 10.1007/s10237-016-0825-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5350259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4320654131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-6751cf2f2f4ef13efd7580348bb9d210b26ce2998096cbae0e6a0912908902ab3</originalsourceid><addsrcrecordid>eNp1kU-L1TAUxYMozvj0A7iRgBs31ZukaRoXwjD-hQE3ug5pevsmQ5uMSTrQb28eb3yMggSSwP3dk3tyCHnJ4C0DUO8yAy5UA6xroOey2R6Rc9Yx1SjdwuPTXeoz8iznGwAOohdPyRlXsmeCt-ckfsSCafHBhpJpnOjg7zCU5N0620SdTaO3jk5rcMXH8J5authyjXXzzs50iSPONJd13GgMdI9xwZI2asNIly1OfsBEY_JV0x4EnpMnk50zvrg_d-Tn508_Lr82V9-_fLu8uGpcq6A0nZLMTbyuFicmcBrrxCDafhj0yBkMvHPIte5Bd26wCNhZ0Ixr6DVwO4gd-XDUvV2HBUd38GRnc5v8YtNmovXm70rw12Yf74wUErjUVeDNvUCKv1bMxSw-O5xnGzCu2bBeaiWgq1-6I6__QW_imkK1VymloG2l6CrFjpRLMeeE02kYBuYQpznGaWqc5hCn2WrPq4cuTh1_8qsAPwK5lsIe04On_6v6G1kxrf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877044536</pqid></control><display><type>article</type><title>Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation</title><source>MEDLINE</source><source>SpringerLink_现刊</source><creator>Pluijmert, Marieke ; Delhaas, Tammo ; de la Parra, Adrián Flores ; Kroon, Wilco ; Prinzen, Frits W. ; Bovendeerd, Peter H. M.</creator><creatorcontrib>Pluijmert, Marieke ; Delhaas, Tammo ; de la Parra, Adrián Flores ; Kroon, Wilco ; Prinzen, Frits W. ; Bovendeerd, Peter H. M.</creatorcontrib><description>In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of ∼ 8 ∘ predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work ( ∼ 18 % ) and in global pump work ( ∼ 17 % ) in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.</description><identifier>ISSN: 1617-7959</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-016-0825-y</identifier><identifier>PMID: 27581324</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Engineering ; Geometry ; Heart - anatomy &amp; histology ; Heart - physiology ; Humans ; Mathematical models ; Models, Theoretical ; Myocardium - cytology ; Short Communication ; Space life sciences ; Theoretical and Applied Mechanics ; Tissues ; Ventricular Function - physiology</subject><ispartof>Biomechanics and modeling in mechanobiology, 2017-04, Vol.16 (2), p.721-729</ispartof><rights>The Author(s) 2016</rights><rights>Biomechanics and Modeling in Mechanobiology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-6751cf2f2f4ef13efd7580348bb9d210b26ce2998096cbae0e6a0912908902ab3</citedby><cites>FETCH-LOGICAL-c470t-6751cf2f2f4ef13efd7580348bb9d210b26ce2998096cbae0e6a0912908902ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-016-0825-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-016-0825-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27581324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pluijmert, Marieke</creatorcontrib><creatorcontrib>Delhaas, Tammo</creatorcontrib><creatorcontrib>de la Parra, Adrián Flores</creatorcontrib><creatorcontrib>Kroon, Wilco</creatorcontrib><creatorcontrib>Prinzen, Frits W.</creatorcontrib><creatorcontrib>Bovendeerd, Peter H. M.</creatorcontrib><title>Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of ∼ 8 ∘ predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work ( ∼ 18 % ) and in global pump work ( ∼ 17 % ) in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.</description><subject>Adaptation</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Engineering</subject><subject>Geometry</subject><subject>Heart - anatomy &amp; histology</subject><subject>Heart - physiology</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Myocardium - cytology</subject><subject>Short Communication</subject><subject>Space life sciences</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tissues</subject><subject>Ventricular Function - physiology</subject><issn>1617-7959</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU-L1TAUxYMozvj0A7iRgBs31ZukaRoXwjD-hQE3ug5pevsmQ5uMSTrQb28eb3yMggSSwP3dk3tyCHnJ4C0DUO8yAy5UA6xroOey2R6Rc9Yx1SjdwuPTXeoz8iznGwAOohdPyRlXsmeCt-ckfsSCafHBhpJpnOjg7zCU5N0620SdTaO3jk5rcMXH8J5authyjXXzzs50iSPONJd13GgMdI9xwZI2asNIly1OfsBEY_JV0x4EnpMnk50zvrg_d-Tn508_Lr82V9-_fLu8uGpcq6A0nZLMTbyuFicmcBrrxCDafhj0yBkMvHPIte5Bd26wCNhZ0Ixr6DVwO4gd-XDUvV2HBUd38GRnc5v8YtNmovXm70rw12Yf74wUErjUVeDNvUCKv1bMxSw-O5xnGzCu2bBeaiWgq1-6I6__QW_imkK1VymloG2l6CrFjpRLMeeE02kYBuYQpznGaWqc5hCn2WrPq4cuTh1_8qsAPwK5lsIe04On_6v6G1kxrf4</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Pluijmert, Marieke</creator><creator>Delhaas, Tammo</creator><creator>de la Parra, Adrián Flores</creator><creator>Kroon, Wilco</creator><creator>Prinzen, Frits W.</creator><creator>Bovendeerd, Peter H. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170401</creationdate><title>Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation</title><author>Pluijmert, Marieke ; Delhaas, Tammo ; de la Parra, Adrián Flores ; Kroon, Wilco ; Prinzen, Frits W. ; Bovendeerd, Peter H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-6751cf2f2f4ef13efd7580348bb9d210b26ce2998096cbae0e6a0912908902ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Engineering</topic><topic>Geometry</topic><topic>Heart - anatomy &amp; histology</topic><topic>Heart - physiology</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Myocardium - cytology</topic><topic>Short Communication</topic><topic>Space life sciences</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tissues</topic><topic>Ventricular Function - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pluijmert, Marieke</creatorcontrib><creatorcontrib>Delhaas, Tammo</creatorcontrib><creatorcontrib>de la Parra, Adrián Flores</creatorcontrib><creatorcontrib>Kroon, Wilco</creatorcontrib><creatorcontrib>Prinzen, Frits W.</creatorcontrib><creatorcontrib>Bovendeerd, Peter H. M.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pluijmert, Marieke</au><au>Delhaas, Tammo</au><au>de la Parra, Adrián Flores</au><au>Kroon, Wilco</au><au>Prinzen, Frits W.</au><au>Bovendeerd, Peter H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>16</volume><issue>2</issue><spage>721</spage><epage>729</epage><pages>721-729</pages><issn>1617-7959</issn><eissn>1617-7940</eissn><abstract>In patient-specific mathematical models of cardiac electromechanics, usually a patient-specific geometry and a generic myofiber orientation field are used as input, upon which myocardial tissue properties are tuned to clinical data. It remains unclear to what extent deviations in myofiber orientation and geometry between model and patient influence model predictions on cardiac function. Therefore, we evaluated the sensitivity of cardiac function for geometry and myofiber orientation in a biventricular (BiV) finite element model of cardiac mechanics. Starting out from a reference geometry in which myofiber orientation had no transmural component, two new geometries were defined with either a 27 % decrease in LV short- to long-axis ratio, or a 16 % decrease of RV length, but identical LV and RV cavity and wall volumes. These variations in geometry caused differences in both local myofiber and global pump work below 6 %. Variation of fiber orientation was induced through adaptive myofiber reorientation that caused an average change in fiber orientation of ∼ 8 ∘ predominantly through the formation of a component in transmural direction. Reorientation caused a considerable increase in local myofiber work ( ∼ 18 % ) and in global pump work ( ∼ 17 % ) in all three geometries, while differences between geometries were below 5 %. The findings suggest that implementing a realistic myofiber orientation is at least as important as defining a patient-specific geometry. The model for remodeling of myofiber orientation seems a useful approach to estimate myofiber orientation in the absence of accurate patient-specific information.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27581324</pmid><doi>10.1007/s10237-016-0825-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2017-04, Vol.16 (2), p.721-729
issn 1617-7959
1617-7940
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5350259
source MEDLINE; SpringerLink_现刊
subjects Adaptation
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Engineering
Geometry
Heart - anatomy & histology
Heart - physiology
Humans
Mathematical models
Models, Theoretical
Myocardium - cytology
Short Communication
Space life sciences
Theoretical and Applied Mechanics
Tissues
Ventricular Function - physiology
title Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determinants%20of%20biventricular%20cardiac%20function:%20a%20mathematical%20model%20study%20on%20geometry%20and%20myofiber%20orientation&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Pluijmert,%20Marieke&rft.date=2017-04-01&rft.volume=16&rft.issue=2&rft.spage=721&rft.epage=729&rft.pages=721-729&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-016-0825-y&rft_dat=%3Cproquest_pubme%3E4320654131%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1877044536&rft_id=info:pmid/27581324&rfr_iscdi=true