Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease

GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human gene therapy 2016-07, Vol.27 (7), p.509-521
Hauptverfasser: Karumuthil-Melethil, Subha, Nagabhushan Kalburgi, Sahana, Thompson, Patrick, Tropak, Michael, Kaytor, Michael D, Keimel, John G, Mark, Brian L, Mahuran, Don, Walia, Jagdeep S, Gray, Steven J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 7
container_start_page 509
container_title Human gene therapy
container_volume 27
creator Karumuthil-Melethil, Subha
Nagabhushan Kalburgi, Sahana
Thompson, Patrick
Tropak, Michael
Kaytor, Michael D
Keimel, John G
Mark, Brian L
Mahuran, Don
Walia, Jagdeep S
Gray, Steven J
description GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.
doi_str_mv 10.1089/hum.2016.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1805763049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-ba3f9d0f36c97b1d0d72f856c67f9ec95bad5237c41f833748581e07773257ca3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhS0EoqWwY40ssemCDH7GyQZpNG0pUgWLDrO1HOd6xlViD3ZS0X_Az65HLRWwYuUr-dO5j3MQekvJgpKm_bibxwUjtF4Qyp-hYyqlqpRg7HmpieAV4YIdoVc535BCyFq9REdM0VZJ0RyjX1_jLQx4A3aKCZ9B9tuATejxJfyM2Yw--N5kwBuTvAkTPg-mG3zY4msYXLWK436AEcJk0h1e9hBitcw5Wm8m6PHGpzljV4SnHeB1AjMdWBwdXpu76trYXcZnPkPp8Bq9cGbI8ObxPUHfL87Xq8vq6tvnL6vlVWUlpVPVGe7anjhe21Z1tCe9Yq6Rta2Va8G2sjO9ZFxZQV3DuRKNbCgQpRRnUlnDT9CnB9393I3Q2zJPMoPeJz-WHXQ0Xv_9E_xOb-Otlly0jNMicPookOKPGfKkR58tDIMJEOesadNQJVrB-H-gRKqaE9EW9P0_6E2cUyiX0Ky4RhWV6kB9eKBsijkncE9zU6IPadAlDfqQBl28Lvi7P3d9gn_bz-8BgIGxiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135171579</pqid></control><display><type>article</type><title>Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Karumuthil-Melethil, Subha ; Nagabhushan Kalburgi, Sahana ; Thompson, Patrick ; Tropak, Michael ; Kaytor, Michael D ; Keimel, John G ; Mark, Brian L ; Mahuran, Don ; Walia, Jagdeep S ; Gray, Steven J</creator><creatorcontrib>Karumuthil-Melethil, Subha ; Nagabhushan Kalburgi, Sahana ; Thompson, Patrick ; Tropak, Michael ; Kaytor, Michael D ; Keimel, John G ; Mark, Brian L ; Mahuran, Don ; Walia, Jagdeep S ; Gray, Steven J</creatorcontrib><description>GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.</description><identifier>ISSN: 1043-0342</identifier><identifier>EISSN: 1557-7422</identifier><identifier>DOI: 10.1089/hum.2016.013</identifier><identifier>PMID: 27197548</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Adeno-associated virus ; Animals ; Animals, Newborn ; Brain ; Central nervous system ; Dependovirus - genetics ; Design ; Disease ; Disease Models, Animal ; Female ; G(M2) Ganglioside - metabolism ; Ganglioside GM2 ; Gangliosidosis ; Gene transfer ; Genetic Therapy ; Genetic Vectors - administration &amp; dosage ; Genomes ; Hexosaminidases - genetics ; Liver ; Liver - metabolism ; Medical treatment ; Mice ; Mice, Inbred C57BL ; Mutation ; Mutation - genetics ; Neonates ; Nervous system ; Neurodegenerative diseases ; Packaging ; Proteins ; Spinal cord ; Substrates ; Tay-Sachs disease ; Tay-Sachs Disease - genetics ; Tay-Sachs Disease - therapy ; Viruses</subject><ispartof>Human gene therapy, 2016-07, Vol.27 (7), p.509-521</ispartof><rights>Copyright Mary Ann Liebert, Inc. Jul 2016</rights><rights>Copyright 2016, Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-ba3f9d0f36c97b1d0d72f856c67f9ec95bad5237c41f833748581e07773257ca3</citedby><cites>FETCH-LOGICAL-c511t-ba3f9d0f36c97b1d0d72f856c67f9ec95bad5237c41f833748581e07773257ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27197548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karumuthil-Melethil, Subha</creatorcontrib><creatorcontrib>Nagabhushan Kalburgi, Sahana</creatorcontrib><creatorcontrib>Thompson, Patrick</creatorcontrib><creatorcontrib>Tropak, Michael</creatorcontrib><creatorcontrib>Kaytor, Michael D</creatorcontrib><creatorcontrib>Keimel, John G</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><creatorcontrib>Mahuran, Don</creatorcontrib><creatorcontrib>Walia, Jagdeep S</creatorcontrib><creatorcontrib>Gray, Steven J</creatorcontrib><title>Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease</title><title>Human gene therapy</title><addtitle>Hum Gene Ther</addtitle><description>GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Dependovirus - genetics</subject><subject>Design</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>G(M2) Ganglioside - metabolism</subject><subject>Ganglioside GM2</subject><subject>Gangliosidosis</subject><subject>Gene transfer</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>Genomes</subject><subject>Hexosaminidases - genetics</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neonates</subject><subject>Nervous system</subject><subject>Neurodegenerative diseases</subject><subject>Packaging</subject><subject>Proteins</subject><subject>Spinal cord</subject><subject>Substrates</subject><subject>Tay-Sachs disease</subject><subject>Tay-Sachs Disease - genetics</subject><subject>Tay-Sachs Disease - therapy</subject><subject>Viruses</subject><issn>1043-0342</issn><issn>1557-7422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAUhS0EoqWwY40ssemCDH7GyQZpNG0pUgWLDrO1HOd6xlViD3ZS0X_Az65HLRWwYuUr-dO5j3MQekvJgpKm_bibxwUjtF4Qyp-hYyqlqpRg7HmpieAV4YIdoVc535BCyFq9REdM0VZJ0RyjX1_jLQx4A3aKCZ9B9tuATejxJfyM2Yw--N5kwBuTvAkTPg-mG3zY4msYXLWK436AEcJk0h1e9hBitcw5Wm8m6PHGpzljV4SnHeB1AjMdWBwdXpu76trYXcZnPkPp8Bq9cGbI8ObxPUHfL87Xq8vq6tvnL6vlVWUlpVPVGe7anjhe21Z1tCe9Yq6Rta2Va8G2sjO9ZFxZQV3DuRKNbCgQpRRnUlnDT9CnB9393I3Q2zJPMoPeJz-WHXQ0Xv_9E_xOb-Otlly0jNMicPookOKPGfKkR58tDIMJEOesadNQJVrB-H-gRKqaE9EW9P0_6E2cUyiX0Ky4RhWV6kB9eKBsijkncE9zU6IPadAlDfqQBl28Lvi7P3d9gn_bz-8BgIGxiA</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Karumuthil-Melethil, Subha</creator><creator>Nagabhushan Kalburgi, Sahana</creator><creator>Thompson, Patrick</creator><creator>Tropak, Michael</creator><creator>Kaytor, Michael D</creator><creator>Keimel, John G</creator><creator>Mark, Brian L</creator><creator>Mahuran, Don</creator><creator>Walia, Jagdeep S</creator><creator>Gray, Steven J</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201607</creationdate><title>Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease</title><author>Karumuthil-Melethil, Subha ; Nagabhushan Kalburgi, Sahana ; Thompson, Patrick ; Tropak, Michael ; Kaytor, Michael D ; Keimel, John G ; Mark, Brian L ; Mahuran, Don ; Walia, Jagdeep S ; Gray, Steven J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-ba3f9d0f36c97b1d0d72f856c67f9ec95bad5237c41f833748581e07773257ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Dependovirus - genetics</topic><topic>Design</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>G(M2) Ganglioside - metabolism</topic><topic>Ganglioside GM2</topic><topic>Gangliosidosis</topic><topic>Gene transfer</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>Genomes</topic><topic>Hexosaminidases - genetics</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neonates</topic><topic>Nervous system</topic><topic>Neurodegenerative diseases</topic><topic>Packaging</topic><topic>Proteins</topic><topic>Spinal cord</topic><topic>Substrates</topic><topic>Tay-Sachs disease</topic><topic>Tay-Sachs Disease - genetics</topic><topic>Tay-Sachs Disease - therapy</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karumuthil-Melethil, Subha</creatorcontrib><creatorcontrib>Nagabhushan Kalburgi, Sahana</creatorcontrib><creatorcontrib>Thompson, Patrick</creatorcontrib><creatorcontrib>Tropak, Michael</creatorcontrib><creatorcontrib>Kaytor, Michael D</creatorcontrib><creatorcontrib>Keimel, John G</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><creatorcontrib>Mahuran, Don</creatorcontrib><creatorcontrib>Walia, Jagdeep S</creatorcontrib><creatorcontrib>Gray, Steven J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karumuthil-Melethil, Subha</au><au>Nagabhushan Kalburgi, Sahana</au><au>Thompson, Patrick</au><au>Tropak, Michael</au><au>Kaytor, Michael D</au><au>Keimel, John G</au><au>Mark, Brian L</au><au>Mahuran, Don</au><au>Walia, Jagdeep S</au><au>Gray, Steven J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease</atitle><jtitle>Human gene therapy</jtitle><addtitle>Hum Gene Ther</addtitle><date>2016-07</date><risdate>2016</risdate><volume>27</volume><issue>7</issue><spage>509</spage><epage>521</epage><pages>509-521</pages><issn>1043-0342</issn><eissn>1557-7422</eissn><abstract>GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>27197548</pmid><doi>10.1089/hum.2016.013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-0342
ispartof Human gene therapy, 2016-07, Vol.27 (7), p.509-521
issn 1043-0342
1557-7422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349231
source MEDLINE; Alma/SFX Local Collection
subjects Adeno-associated virus
Animals
Animals, Newborn
Brain
Central nervous system
Dependovirus - genetics
Design
Disease
Disease Models, Animal
Female
G(M2) Ganglioside - metabolism
Ganglioside GM2
Gangliosidosis
Gene transfer
Genetic Therapy
Genetic Vectors - administration & dosage
Genomes
Hexosaminidases - genetics
Liver
Liver - metabolism
Medical treatment
Mice
Mice, Inbred C57BL
Mutation
Mutation - genetics
Neonates
Nervous system
Neurodegenerative diseases
Packaging
Proteins
Spinal cord
Substrates
Tay-Sachs disease
Tay-Sachs Disease - genetics
Tay-Sachs Disease - therapy
Viruses
title Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Vector%20Design%20and%20Hexosaminidase%20Variant%20Enabling%20Self-Complementary%20Adeno-Associated%20Virus%20for%20the%20Treatment%20of%20Tay-Sachs%20Disease&rft.jtitle=Human%20gene%20therapy&rft.au=Karumuthil-Melethil,%20Subha&rft.date=2016-07&rft.volume=27&rft.issue=7&rft.spage=509&rft.epage=521&rft.pages=509-521&rft.issn=1043-0342&rft.eissn=1557-7422&rft_id=info:doi/10.1089/hum.2016.013&rft_dat=%3Cproquest_pubme%3E1805763049%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135171579&rft_id=info:pmid/27197548&rfr_iscdi=true