Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation
Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellula...
Gespeichert in:
Veröffentlicht in: | Oncotarget 2016-12, Vol.7 (50), p.82658-82670 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82670 |
---|---|
container_issue | 50 |
container_start_page | 82658 |
container_title | Oncotarget |
container_volume | 7 |
creator | Long, Yan Tsai, Wen-Bin Chang, Jeffrey T Estecio, Marcos Wangpaichitr, Medhi Savaraj, Naramol Feun, Lynn G Chen, Helen H W Kuo, Macus Tien |
description | Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression. Moreover, it was reported that cisplatin suppresses ASS1 expression through ASS1 promoter methylation, leading to synthetic lethality to ADI-PEG20 treatment. We report here that cisplatin supppresses ASS1 expression is due to upregulation of HIF-1α and downregulation of c-Myc, which function as negative and positive regulators of ASS1 expression, respectively, by reciprocal bindings to the ASS1 promoter. In contrast, we found that Aza-dC induces ASS1 expression by downregulation of HIF-1α but upregulation of c-Myc. We further demonstrated that the clock protein DEC1 is the master regulator of HIF-1α and c-Myc that regulate ASS1. cDDP upregulates DEC1, whereas Aza-dC suppresses its expression. Using two proteasomal inhibitors bortezomib and carfilzomib which induce HIF-1α accumulation, we further demonstrated that HIF-1α is involved in ASS1 silencing for the maintenance of Arg auxotrophy for targeted Arg-starvation therapy. |
doi_str_mv | 10.18632/oncotarget.12308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5347722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835511826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-329c177d20df0261fb3dd3fba24fbd1c9bf31cf123a9bdc03f00505e76b663613</originalsourceid><addsrcrecordid>eNpVUstOFTEYbogGCPIAbEyXLhictmduG5OTAwgJ6gJZN51ezql22rHtYOaxfBEfwWfx54BH6KJt8n-3_PkQOiHlGWlrRt8HL0MWca3zGaGsbPfQIekWXUGrir169j9Axyl9K-FUi6al3T46oE1TVx2jh-jPyqbRiWx9Yb2apFY4zT5vdLYSO503wtk84xwwOFlvvS4SmN4DI3gMuCjGGfeAiMInGe34MBAOp2kco07pARYMXt7eEmwTjno9gR3YAOf8YkVO8dX1ZUF-_zrFwissi0-zfCmGvc4_Q_y-nYME5NSjhsvnnfIYwxCyjvj88xIPEHt224Rv0GsjXNLHT-8Ruru8-Lq6Km6-fLxeLW8KSRuSC0Y7SZpG0VKZktbE9EwpZnpBF6ZXRHa9YUQaWLPoeiVLZmCZZaWbuq9rVhN2hD486o5TP2glIVsUjo_RDiLOPAjLX0683fB1uOcVWzQNpSDw7kkghh-TTpkPNkntnPA6TImTllUVIS2tAUoeoTKGlKI2OxtS8m01-P9q8G01gPP2eb4d418R2F89Zr6N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835511826</pqid></control><display><type>article</type><title>Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free E- Journals</source><source>PubMed Central Open Access</source><creator>Long, Yan ; Tsai, Wen-Bin ; Chang, Jeffrey T ; Estecio, Marcos ; Wangpaichitr, Medhi ; Savaraj, Naramol ; Feun, Lynn G ; Chen, Helen H W ; Kuo, Macus Tien</creator><creatorcontrib>Long, Yan ; Tsai, Wen-Bin ; Chang, Jeffrey T ; Estecio, Marcos ; Wangpaichitr, Medhi ; Savaraj, Naramol ; Feun, Lynn G ; Chen, Helen H W ; Kuo, Macus Tien</creatorcontrib><description>Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression. Moreover, it was reported that cisplatin suppresses ASS1 expression through ASS1 promoter methylation, leading to synthetic lethality to ADI-PEG20 treatment. We report here that cisplatin supppresses ASS1 expression is due to upregulation of HIF-1α and downregulation of c-Myc, which function as negative and positive regulators of ASS1 expression, respectively, by reciprocal bindings to the ASS1 promoter. In contrast, we found that Aza-dC induces ASS1 expression by downregulation of HIF-1α but upregulation of c-Myc. We further demonstrated that the clock protein DEC1 is the master regulator of HIF-1α and c-Myc that regulate ASS1. cDDP upregulates DEC1, whereas Aza-dC suppresses its expression. Using two proteasomal inhibitors bortezomib and carfilzomib which induce HIF-1α accumulation, we further demonstrated that HIF-1α is involved in ASS1 silencing for the maintenance of Arg auxotrophy for targeted Arg-starvation therapy.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.12308</identifier><identifier>PMID: 27765932</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology ; Arginine - deficiency ; Argininosuccinate Synthase - genetics ; Argininosuccinate Synthase - metabolism ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Cell Line, Tumor ; Cell Survival - drug effects ; Cisplatin - pharmacology ; DNA Methylation - drug effects ; Dose-Response Relationship, Drug ; Down-Regulation ; Drug Resistance, Neoplasm ; Gene Expression Regulation, Neoplastic ; Histone Deacetylase Inhibitors - pharmacology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Hydrolases - pharmacology ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Neoplasms - drug therapy ; Neoplasms - enzymology ; Neoplasms - genetics ; Neoplasms - pathology ; Polyethylene Glycols - pharmacology ; Promoter Regions, Genetic ; Proteasome Inhibitors - pharmacology ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Research Paper ; RNA Interference ; Signal Transduction - drug effects ; Time Factors ; Transcription, Genetic - drug effects ; Transfection</subject><ispartof>Oncotarget, 2016-12, Vol.7 (50), p.82658-82670</ispartof><rights>Copyright: © 2016 Long et al. 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-329c177d20df0261fb3dd3fba24fbd1c9bf31cf123a9bdc03f00505e76b663613</citedby><cites>FETCH-LOGICAL-c271t-329c177d20df0261fb3dd3fba24fbd1c9bf31cf123a9bdc03f00505e76b663613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347722/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347722/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27765932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Yan</creatorcontrib><creatorcontrib>Tsai, Wen-Bin</creatorcontrib><creatorcontrib>Chang, Jeffrey T</creatorcontrib><creatorcontrib>Estecio, Marcos</creatorcontrib><creatorcontrib>Wangpaichitr, Medhi</creatorcontrib><creatorcontrib>Savaraj, Naramol</creatorcontrib><creatorcontrib>Feun, Lynn G</creatorcontrib><creatorcontrib>Chen, Helen H W</creatorcontrib><creatorcontrib>Kuo, Macus Tien</creatorcontrib><title>Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression. Moreover, it was reported that cisplatin suppresses ASS1 expression through ASS1 promoter methylation, leading to synthetic lethality to ADI-PEG20 treatment. We report here that cisplatin supppresses ASS1 expression is due to upregulation of HIF-1α and downregulation of c-Myc, which function as negative and positive regulators of ASS1 expression, respectively, by reciprocal bindings to the ASS1 promoter. In contrast, we found that Aza-dC induces ASS1 expression by downregulation of HIF-1α but upregulation of c-Myc. We further demonstrated that the clock protein DEC1 is the master regulator of HIF-1α and c-Myc that regulate ASS1. cDDP upregulates DEC1, whereas Aza-dC suppresses its expression. Using two proteasomal inhibitors bortezomib and carfilzomib which induce HIF-1α accumulation, we further demonstrated that HIF-1α is involved in ASS1 silencing for the maintenance of Arg auxotrophy for targeted Arg-starvation therapy.</description><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>Arginine - deficiency</subject><subject>Argininosuccinate Synthase - genetics</subject><subject>Argininosuccinate Synthase - metabolism</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cisplatin - pharmacology</subject><subject>DNA Methylation - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Down-Regulation</subject><subject>Drug Resistance, Neoplasm</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Hydrolases - pharmacology</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Polyethylene Glycols - pharmacology</subject><subject>Promoter Regions, Genetic</subject><subject>Proteasome Inhibitors - pharmacology</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Research Paper</subject><subject>RNA Interference</subject><subject>Signal Transduction - drug effects</subject><subject>Time Factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transfection</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUstOFTEYbogGCPIAbEyXLhictmduG5OTAwgJ6gJZN51ezql22rHtYOaxfBEfwWfx54BH6KJt8n-3_PkQOiHlGWlrRt8HL0MWca3zGaGsbPfQIekWXUGrir169j9Axyl9K-FUi6al3T46oE1TVx2jh-jPyqbRiWx9Yb2apFY4zT5vdLYSO503wtk84xwwOFlvvS4SmN4DI3gMuCjGGfeAiMInGe34MBAOp2kco07pARYMXt7eEmwTjno9gR3YAOf8YkVO8dX1ZUF-_zrFwissi0-zfCmGvc4_Q_y-nYME5NSjhsvnnfIYwxCyjvj88xIPEHt224Rv0GsjXNLHT-8Ruru8-Lq6Km6-fLxeLW8KSRuSC0Y7SZpG0VKZktbE9EwpZnpBF6ZXRHa9YUQaWLPoeiVLZmCZZaWbuq9rVhN2hD486o5TP2glIVsUjo_RDiLOPAjLX0683fB1uOcVWzQNpSDw7kkghh-TTpkPNkntnPA6TImTllUVIS2tAUoeoTKGlKI2OxtS8m01-P9q8G01gPP2eb4d418R2F89Zr6N</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Long, Yan</creator><creator>Tsai, Wen-Bin</creator><creator>Chang, Jeffrey T</creator><creator>Estecio, Marcos</creator><creator>Wangpaichitr, Medhi</creator><creator>Savaraj, Naramol</creator><creator>Feun, Lynn G</creator><creator>Chen, Helen H W</creator><creator>Kuo, Macus Tien</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161213</creationdate><title>Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation</title><author>Long, Yan ; Tsai, Wen-Bin ; Chang, Jeffrey T ; Estecio, Marcos ; Wangpaichitr, Medhi ; Savaraj, Naramol ; Feun, Lynn G ; Chen, Helen H W ; Kuo, Macus Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-329c177d20df0261fb3dd3fba24fbd1c9bf31cf123a9bdc03f00505e76b663613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>Arginine - deficiency</topic><topic>Argininosuccinate Synthase - genetics</topic><topic>Argininosuccinate Synthase - metabolism</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cisplatin - pharmacology</topic><topic>DNA Methylation - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Down-Regulation</topic><topic>Drug Resistance, Neoplasm</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Hydrolases - pharmacology</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Polyethylene Glycols - pharmacology</topic><topic>Promoter Regions, Genetic</topic><topic>Proteasome Inhibitors - pharmacology</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Research Paper</topic><topic>RNA Interference</topic><topic>Signal Transduction - drug effects</topic><topic>Time Factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transfection</topic><toplevel>online_resources</toplevel><creatorcontrib>Long, Yan</creatorcontrib><creatorcontrib>Tsai, Wen-Bin</creatorcontrib><creatorcontrib>Chang, Jeffrey T</creatorcontrib><creatorcontrib>Estecio, Marcos</creatorcontrib><creatorcontrib>Wangpaichitr, Medhi</creatorcontrib><creatorcontrib>Savaraj, Naramol</creatorcontrib><creatorcontrib>Feun, Lynn G</creatorcontrib><creatorcontrib>Chen, Helen H W</creatorcontrib><creatorcontrib>Kuo, Macus Tien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yan</au><au>Tsai, Wen-Bin</au><au>Chang, Jeffrey T</au><au>Estecio, Marcos</au><au>Wangpaichitr, Medhi</au><au>Savaraj, Naramol</au><au>Feun, Lynn G</au><au>Chen, Helen H W</au><au>Kuo, Macus Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>7</volume><issue>50</issue><spage>82658</spage><epage>82670</epage><pages>82658-82670</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression. Moreover, it was reported that cisplatin suppresses ASS1 expression through ASS1 promoter methylation, leading to synthetic lethality to ADI-PEG20 treatment. We report here that cisplatin supppresses ASS1 expression is due to upregulation of HIF-1α and downregulation of c-Myc, which function as negative and positive regulators of ASS1 expression, respectively, by reciprocal bindings to the ASS1 promoter. In contrast, we found that Aza-dC induces ASS1 expression by downregulation of HIF-1α but upregulation of c-Myc. We further demonstrated that the clock protein DEC1 is the master regulator of HIF-1α and c-Myc that regulate ASS1. cDDP upregulates DEC1, whereas Aza-dC suppresses its expression. Using two proteasomal inhibitors bortezomib and carfilzomib which induce HIF-1α accumulation, we further demonstrated that HIF-1α is involved in ASS1 silencing for the maintenance of Arg auxotrophy for targeted Arg-starvation therapy.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>27765932</pmid><doi>10.18632/oncotarget.12308</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-2553 |
ispartof | Oncotarget, 2016-12, Vol.7 (50), p.82658-82670 |
issn | 1949-2553 1949-2553 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5347722 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free E- Journals; PubMed Central Open Access |
subjects | Antineoplastic Combined Chemotherapy Protocols - pharmacology Arginine - deficiency Argininosuccinate Synthase - genetics Argininosuccinate Synthase - metabolism Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Cell Line, Tumor Cell Survival - drug effects Cisplatin - pharmacology DNA Methylation - drug effects Dose-Response Relationship, Drug Down-Regulation Drug Resistance, Neoplasm Gene Expression Regulation, Neoplastic Histone Deacetylase Inhibitors - pharmacology Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Humans Hydrolases - pharmacology Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Neoplasms - drug therapy Neoplasms - enzymology Neoplasms - genetics Neoplasms - pathology Polyethylene Glycols - pharmacology Promoter Regions, Genetic Proteasome Inhibitors - pharmacology Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Research Paper RNA Interference Signal Transduction - drug effects Time Factors Transcription, Genetic - drug effects Transfection |
title | Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cisplatin-induced%20synthetic%20lethality%20to%20arginine-starvation%20therapy%20by%20transcriptional%20suppression%20of%20ASS1%20is%20regulated%20by%20DEC1,%20HIF-1%CE%B1,%20and%20c-Myc%20transcription%20network%20and%20is%20independent%20of%20ASS1%20promoter%20DNA%20methylation&rft.jtitle=Oncotarget&rft.au=Long,%20Yan&rft.date=2016-12-13&rft.volume=7&rft.issue=50&rft.spage=82658&rft.epage=82670&rft.pages=82658-82670&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.12308&rft_dat=%3Cproquest_pubme%3E1835511826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835511826&rft_id=info:pmid/27765932&rfr_iscdi=true |