The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes
Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insuli...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-03, Vol.7 (1), p.44041-44041, Article 44041 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44041 |
---|---|
container_issue | 1 |
container_start_page | 44041 |
container_title | Scientific reports |
container_volume | 7 |
creator | Rodriguez Camargo, Diana C. Tripsianes, Konstantinos Buday, Katalin Franko, Andras Göbl, Christoph Hartlmüller, Christoph Sarkar, Riddhiman Aichler, Michaela Mettenleiter, Gabriele Schulz, Michael Böddrich, Annett Erck, Christian Martens, Henrik Walch, Axel Karl Madl, Tobias Wanker, Erich E. Conrad, Marcus de Angelis, Martin Hrabě Reif, Bernd |
description | Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in β-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates. |
doi_str_mv | 10.1038/srep44041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5347123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1876815758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-d1fcd7957c6714fb6804b484d985ef9e16b9b0c7db84df39de8d4986562e347b3</originalsourceid><addsrcrecordid>eNplkUtrGzEUhYfS0IQki_6BIuimLbjVc0baFEL6MgSShbsWetwZK8xIrjQOyb-vGqfGbbS5QufT0b06TfOa4I8EM_mpZNhwjjl50ZxQzMWCMkpfHuyPm_NSbnFdgipO1KvmmEoqO6zkSWNXa0AZfLpHEO9CTnGCOKM5h2GAXJBLsU95MnNI0YzIrU0coCATPTLDkGF4VFDq0Xp5cXODQkSrhw2g5RJ9CcbCDOWsOerNWOD8qZ42P799XV3-WFxdf19eXlwtnMB8XnjSO98p0bm2I7y3rcTccsm9kgJ6BaS1ymLXeVvPeqY8SM-VbEVLgfHOstPm8853s7UTeFfnyGbUmxwmkx90MkH_q8Sw1kO606JeJ5RVg3dPBjn92kKZ9RSKg3E0EdK2aCK7VhLRCVnRt_-ht2mb6w9VSmHGWiYfDd_vKJdTqTn1-2YI1n_C0_vwKvvmsPs9-TeqCnzYAaVKNYR88OQzt9_ZPKP5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903363823</pqid></control><display><type>article</type><title>The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Rodriguez Camargo, Diana C. ; Tripsianes, Konstantinos ; Buday, Katalin ; Franko, Andras ; Göbl, Christoph ; Hartlmüller, Christoph ; Sarkar, Riddhiman ; Aichler, Michaela ; Mettenleiter, Gabriele ; Schulz, Michael ; Böddrich, Annett ; Erck, Christian ; Martens, Henrik ; Walch, Axel Karl ; Madl, Tobias ; Wanker, Erich E. ; Conrad, Marcus ; de Angelis, Martin Hrabě ; Reif, Bernd</creator><creatorcontrib>Rodriguez Camargo, Diana C. ; Tripsianes, Konstantinos ; Buday, Katalin ; Franko, Andras ; Göbl, Christoph ; Hartlmüller, Christoph ; Sarkar, Riddhiman ; Aichler, Michaela ; Mettenleiter, Gabriele ; Schulz, Michael ; Böddrich, Annett ; Erck, Christian ; Martens, Henrik ; Walch, Axel Karl ; Madl, Tobias ; Wanker, Erich E. ; Conrad, Marcus ; de Angelis, Martin Hrabě ; Reif, Bernd</creatorcontrib><description>Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in β-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep44041</identifier><identifier>PMID: 28287098</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14/3 ; 140/131 ; 631/337/470/2284 ; 631/535/878/1264 ; 631/92/470/2284 ; 82/29 ; 82/6 ; 82/83 ; Amylin ; Amyloid ; Amyloidogenesis ; Animals ; Biodegradation ; Cell death ; Cell disruption ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - pathology ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Female ; Hormones ; Humanities and Social Sciences ; Humans ; Insulin ; Insulin resistance ; Islet Amyloid Polypeptide - chemistry ; Islet Amyloid Polypeptide - metabolism ; Mice, Inbred BALB C ; Mice, Transgenic ; multidisciplinary ; N-Terminus ; Oxidation-Reduction ; Protein Aggregation, Pathological ; Protein Conformation ; Science</subject><ispartof>Scientific reports, 2017-03, Vol.7 (1), p.44041-44041, Article 44041</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-d1fcd7957c6714fb6804b484d985ef9e16b9b0c7db84df39de8d4986562e347b3</citedby><cites>FETCH-LOGICAL-c504t-d1fcd7957c6714fb6804b484d985ef9e16b9b0c7db84df39de8d4986562e347b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28287098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez Camargo, Diana C.</creatorcontrib><creatorcontrib>Tripsianes, Konstantinos</creatorcontrib><creatorcontrib>Buday, Katalin</creatorcontrib><creatorcontrib>Franko, Andras</creatorcontrib><creatorcontrib>Göbl, Christoph</creatorcontrib><creatorcontrib>Hartlmüller, Christoph</creatorcontrib><creatorcontrib>Sarkar, Riddhiman</creatorcontrib><creatorcontrib>Aichler, Michaela</creatorcontrib><creatorcontrib>Mettenleiter, Gabriele</creatorcontrib><creatorcontrib>Schulz, Michael</creatorcontrib><creatorcontrib>Böddrich, Annett</creatorcontrib><creatorcontrib>Erck, Christian</creatorcontrib><creatorcontrib>Martens, Henrik</creatorcontrib><creatorcontrib>Walch, Axel Karl</creatorcontrib><creatorcontrib>Madl, Tobias</creatorcontrib><creatorcontrib>Wanker, Erich E.</creatorcontrib><creatorcontrib>Conrad, Marcus</creatorcontrib><creatorcontrib>de Angelis, Martin Hrabě</creatorcontrib><creatorcontrib>Reif, Bernd</creatorcontrib><title>The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in β-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates.</description><subject>13/1</subject><subject>14/3</subject><subject>140/131</subject><subject>631/337/470/2284</subject><subject>631/535/878/1264</subject><subject>631/92/470/2284</subject><subject>82/29</subject><subject>82/6</subject><subject>82/83</subject><subject>Amylin</subject><subject>Amyloid</subject><subject>Amyloidogenesis</subject><subject>Animals</subject><subject>Biodegradation</subject><subject>Cell death</subject><subject>Cell disruption</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - pathology</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Female</subject><subject>Hormones</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Islet Amyloid Polypeptide - chemistry</subject><subject>Islet Amyloid Polypeptide - metabolism</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>N-Terminus</subject><subject>Oxidation-Reduction</subject><subject>Protein Aggregation, Pathological</subject><subject>Protein Conformation</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtrGzEUhYfS0IQki_6BIuimLbjVc0baFEL6MgSShbsWetwZK8xIrjQOyb-vGqfGbbS5QufT0b06TfOa4I8EM_mpZNhwjjl50ZxQzMWCMkpfHuyPm_NSbnFdgipO1KvmmEoqO6zkSWNXa0AZfLpHEO9CTnGCOKM5h2GAXJBLsU95MnNI0YzIrU0coCATPTLDkGF4VFDq0Xp5cXODQkSrhw2g5RJ9CcbCDOWsOerNWOD8qZ42P799XV3-WFxdf19eXlwtnMB8XnjSO98p0bm2I7y3rcTccsm9kgJ6BaS1ymLXeVvPeqY8SM-VbEVLgfHOstPm8853s7UTeFfnyGbUmxwmkx90MkH_q8Sw1kO606JeJ5RVg3dPBjn92kKZ9RSKg3E0EdK2aCK7VhLRCVnRt_-ht2mb6w9VSmHGWiYfDd_vKJdTqTn1-2YI1n_C0_vwKvvmsPs9-TeqCnzYAaVKNYR88OQzt9_ZPKP5</recordid><startdate>20170313</startdate><enddate>20170313</enddate><creator>Rodriguez Camargo, Diana C.</creator><creator>Tripsianes, Konstantinos</creator><creator>Buday, Katalin</creator><creator>Franko, Andras</creator><creator>Göbl, Christoph</creator><creator>Hartlmüller, Christoph</creator><creator>Sarkar, Riddhiman</creator><creator>Aichler, Michaela</creator><creator>Mettenleiter, Gabriele</creator><creator>Schulz, Michael</creator><creator>Böddrich, Annett</creator><creator>Erck, Christian</creator><creator>Martens, Henrik</creator><creator>Walch, Axel Karl</creator><creator>Madl, Tobias</creator><creator>Wanker, Erich E.</creator><creator>Conrad, Marcus</creator><creator>de Angelis, Martin Hrabě</creator><creator>Reif, Bernd</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170313</creationdate><title>The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes</title><author>Rodriguez Camargo, Diana C. ; Tripsianes, Konstantinos ; Buday, Katalin ; Franko, Andras ; Göbl, Christoph ; Hartlmüller, Christoph ; Sarkar, Riddhiman ; Aichler, Michaela ; Mettenleiter, Gabriele ; Schulz, Michael ; Böddrich, Annett ; Erck, Christian ; Martens, Henrik ; Walch, Axel Karl ; Madl, Tobias ; Wanker, Erich E. ; Conrad, Marcus ; de Angelis, Martin Hrabě ; Reif, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-d1fcd7957c6714fb6804b484d985ef9e16b9b0c7db84df39de8d4986562e347b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>14/3</topic><topic>140/131</topic><topic>631/337/470/2284</topic><topic>631/535/878/1264</topic><topic>631/92/470/2284</topic><topic>82/29</topic><topic>82/6</topic><topic>82/83</topic><topic>Amylin</topic><topic>Amyloid</topic><topic>Amyloidogenesis</topic><topic>Animals</topic><topic>Biodegradation</topic><topic>Cell death</topic><topic>Cell disruption</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - pathology</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Female</topic><topic>Hormones</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Islet Amyloid Polypeptide - chemistry</topic><topic>Islet Amyloid Polypeptide - metabolism</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>N-Terminus</topic><topic>Oxidation-Reduction</topic><topic>Protein Aggregation, Pathological</topic><topic>Protein Conformation</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez Camargo, Diana C.</creatorcontrib><creatorcontrib>Tripsianes, Konstantinos</creatorcontrib><creatorcontrib>Buday, Katalin</creatorcontrib><creatorcontrib>Franko, Andras</creatorcontrib><creatorcontrib>Göbl, Christoph</creatorcontrib><creatorcontrib>Hartlmüller, Christoph</creatorcontrib><creatorcontrib>Sarkar, Riddhiman</creatorcontrib><creatorcontrib>Aichler, Michaela</creatorcontrib><creatorcontrib>Mettenleiter, Gabriele</creatorcontrib><creatorcontrib>Schulz, Michael</creatorcontrib><creatorcontrib>Böddrich, Annett</creatorcontrib><creatorcontrib>Erck, Christian</creatorcontrib><creatorcontrib>Martens, Henrik</creatorcontrib><creatorcontrib>Walch, Axel Karl</creatorcontrib><creatorcontrib>Madl, Tobias</creatorcontrib><creatorcontrib>Wanker, Erich E.</creatorcontrib><creatorcontrib>Conrad, Marcus</creatorcontrib><creatorcontrib>de Angelis, Martin Hrabě</creatorcontrib><creatorcontrib>Reif, Bernd</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez Camargo, Diana C.</au><au>Tripsianes, Konstantinos</au><au>Buday, Katalin</au><au>Franko, Andras</au><au>Göbl, Christoph</au><au>Hartlmüller, Christoph</au><au>Sarkar, Riddhiman</au><au>Aichler, Michaela</au><au>Mettenleiter, Gabriele</au><au>Schulz, Michael</au><au>Böddrich, Annett</au><au>Erck, Christian</au><au>Martens, Henrik</au><au>Walch, Axel Karl</au><au>Madl, Tobias</au><au>Wanker, Erich E.</au><au>Conrad, Marcus</au><au>de Angelis, Martin Hrabě</au><au>Reif, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-03-13</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>44041</spage><epage>44041</epage><pages>44041-44041</pages><artnum>44041</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in β-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28287098</pmid><doi>10.1038/srep44041</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-03, Vol.7 (1), p.44041-44041, Article 44041 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5347123 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13/1 14/3 140/131 631/337/470/2284 631/535/878/1264 631/92/470/2284 82/29 82/6 82/83 Amylin Amyloid Amyloidogenesis Animals Biodegradation Cell death Cell disruption Diabetes Diabetes mellitus Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - pathology Endoplasmic reticulum Endoplasmic Reticulum Stress Female Hormones Humanities and Social Sciences Humans Insulin Insulin resistance Islet Amyloid Polypeptide - chemistry Islet Amyloid Polypeptide - metabolism Mice, Inbred BALB C Mice, Transgenic multidisciplinary N-Terminus Oxidation-Reduction Protein Aggregation, Pathological Protein Conformation Science |
title | The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20redox%20environment%20triggers%20conformational%20changes%20and%20aggregation%20of%20hIAPP%20in%20Type%20II%20Diabetes&rft.jtitle=Scientific%20reports&rft.au=Rodriguez%20Camargo,%20Diana%20C.&rft.date=2017-03-13&rft.volume=7&rft.issue=1&rft.spage=44041&rft.epage=44041&rft.pages=44041-44041&rft.artnum=44041&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep44041&rft_dat=%3Cproquest_pubme%3E1876815758%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903363823&rft_id=info:pmid/28287098&rfr_iscdi=true |