Intermuscular force transmission along myofascial chains: a systematic review
The present review aims to provide a systematic overview on tensile transmission along myofascial chains based on anatomical dissection studies and in vivo experiments. Evidence for the existence of myofascial chains is growing, and the capability of force transmission via myofascial chains has been...
Gespeichert in:
Veröffentlicht in: | Journal of anatomy 2016-06, Vol.228 (6), p.910-918 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 918 |
---|---|
container_issue | 6 |
container_start_page | 910 |
container_title | Journal of anatomy |
container_volume | 228 |
creator | Krause, Frieder Wilke, Jan Vogt, Lutz Banzer, Winfried |
description | The present review aims to provide a systematic overview on tensile transmission along myofascial chains based on anatomical dissection studies and in vivo experiments. Evidence for the existence of myofascial chains is growing, and the capability of force transmission via myofascial chains has been hypothesized. However, there is still a lack of evidence concerning the functional significance and capability for force transfer. A systematic literature research was conducted using MEDLINE (Pubmed), ScienceDirect and Google Scholar. Studied myofascial chains encompassed the superficial backline (SBL), the back functional line (BFL) and the front functional line (FFL). Peer‐reviewed human dissection studies as well as in vivo experiments reporting intermuscular tension transfer between the constituents of a myofascial chain were included. To assess methodic quality, two independent investigators rated studies by means of validated assessment tools (QUACS and PEDro Scale). The literature research identified 1022 articles. Nine studies (moderate to excellent methodological quality) were included. Concerning the SBL and the BFL, there is moderate evidence for force transfer at all three transitions (based on six studies), and one of two transitions (three studies). One study yields moderate evidence for a slight, but not significant force transfer at one transition in the FFL. The findings of the present study indicate that tension can be transferred between some of the examined adjacent structures. Force transfer might have an impact in overuse conditions as well as on sports performance. However, different methods of force application and measurement hinder the comparability of results. Considering anatomical variations in the degree of continuity and histological differences of the linking structures is crucial for interpretation. Future studies should focus on the in vivo function of myofascial continuity during isolated active or passive tissue tensioning. |
doi_str_mv | 10.1111/joa.12464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5341578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1789039678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5094-39645759a0cb32827c14020f457a189d29a7fbedb9be3bbbb89ec9a744c66e733</originalsourceid><addsrcrecordid>eNp1kUtP3TAQhS1EBZfHgj9QRWIDi4DtOLHNAgkhXhUVG7q2Jr4T8FViUzsB3X-P4VLUInU2Ho2_OTqjQ8geo0cs1_EiwBHjohFrZMZEo0tZK7pOZpRyViqp-CbZSmlBKauoFhtkk8vcUy5n5OeNHzEOU7JTD7HoQrRYjBF8GlxKLvgC-uAfimEZOkjWQV_YR3A-nRRQpGUacYDR2SLis8OXHfKtgz7h7se7TX5dXtyfX5e3d1c352e3pa2zgbLSjahlrYHatuKKS8sE5bTLQ2BKz7kG2bU4b3WLVZtLabR5JoRtGpRVtU1OV7pPUzvg3KLPlnvzFN0AcWkCOPPvj3eP5iE8m7oSrJYqCxx8CMTwe8I0mnyuxb4Hj2FKhkmlabb5ju5_QRdhij6f90YpVte80pk6XFE2hpQidp9mGDVvIeUtMO8hZfb73-4_yT-pZOB4Bby4Hpf_VzI_7s5Wkq9zc5ye</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788155239</pqid></control><display><type>article</type><title>Intermuscular force transmission along myofascial chains: a systematic review</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Krause, Frieder ; Wilke, Jan ; Vogt, Lutz ; Banzer, Winfried</creator><creatorcontrib>Krause, Frieder ; Wilke, Jan ; Vogt, Lutz ; Banzer, Winfried</creatorcontrib><description>The present review aims to provide a systematic overview on tensile transmission along myofascial chains based on anatomical dissection studies and in vivo experiments. Evidence for the existence of myofascial chains is growing, and the capability of force transmission via myofascial chains has been hypothesized. However, there is still a lack of evidence concerning the functional significance and capability for force transfer. A systematic literature research was conducted using MEDLINE (Pubmed), ScienceDirect and Google Scholar. Studied myofascial chains encompassed the superficial backline (SBL), the back functional line (BFL) and the front functional line (FFL). Peer‐reviewed human dissection studies as well as in vivo experiments reporting intermuscular tension transfer between the constituents of a myofascial chain were included. To assess methodic quality, two independent investigators rated studies by means of validated assessment tools (QUACS and PEDro Scale). The literature research identified 1022 articles. Nine studies (moderate to excellent methodological quality) were included. Concerning the SBL and the BFL, there is moderate evidence for force transfer at all three transitions (based on six studies), and one of two transitions (three studies). One study yields moderate evidence for a slight, but not significant force transfer at one transition in the FFL. The findings of the present study indicate that tension can be transferred between some of the examined adjacent structures. Force transfer might have an impact in overuse conditions as well as on sports performance. However, different methods of force application and measurement hinder the comparability of results. Considering anatomical variations in the degree of continuity and histological differences of the linking structures is crucial for interpretation. Future studies should focus on the in vivo function of myofascial continuity during isolated active or passive tissue tensioning.</description><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/joa.12464</identifier><identifier>PMID: 27001027</identifier><identifier>CODEN: JOANAY</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>anatomy trains ; fascia ; Fascia - physiology ; Humans ; Muscle, Skeletal - physiology ; myofascial continuity ; Review ; tension transfer</subject><ispartof>Journal of anatomy, 2016-06, Vol.228 (6), p.910-918</ispartof><rights>2016 Anatomical Society</rights><rights>2016 Anatomical Society.</rights><rights>Copyright © 2016 Anatomical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5094-39645759a0cb32827c14020f457a189d29a7fbedb9be3bbbb89ec9a744c66e733</citedby><cites>FETCH-LOGICAL-c5094-39645759a0cb32827c14020f457a189d29a7fbedb9be3bbbb89ec9a744c66e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341578/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341578/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27001027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krause, Frieder</creatorcontrib><creatorcontrib>Wilke, Jan</creatorcontrib><creatorcontrib>Vogt, Lutz</creatorcontrib><creatorcontrib>Banzer, Winfried</creatorcontrib><title>Intermuscular force transmission along myofascial chains: a systematic review</title><title>Journal of anatomy</title><addtitle>J Anat</addtitle><description>The present review aims to provide a systematic overview on tensile transmission along myofascial chains based on anatomical dissection studies and in vivo experiments. Evidence for the existence of myofascial chains is growing, and the capability of force transmission via myofascial chains has been hypothesized. However, there is still a lack of evidence concerning the functional significance and capability for force transfer. A systematic literature research was conducted using MEDLINE (Pubmed), ScienceDirect and Google Scholar. Studied myofascial chains encompassed the superficial backline (SBL), the back functional line (BFL) and the front functional line (FFL). Peer‐reviewed human dissection studies as well as in vivo experiments reporting intermuscular tension transfer between the constituents of a myofascial chain were included. To assess methodic quality, two independent investigators rated studies by means of validated assessment tools (QUACS and PEDro Scale). The literature research identified 1022 articles. Nine studies (moderate to excellent methodological quality) were included. Concerning the SBL and the BFL, there is moderate evidence for force transfer at all three transitions (based on six studies), and one of two transitions (three studies). One study yields moderate evidence for a slight, but not significant force transfer at one transition in the FFL. The findings of the present study indicate that tension can be transferred between some of the examined adjacent structures. Force transfer might have an impact in overuse conditions as well as on sports performance. However, different methods of force application and measurement hinder the comparability of results. Considering anatomical variations in the degree of continuity and histological differences of the linking structures is crucial for interpretation. Future studies should focus on the in vivo function of myofascial continuity during isolated active or passive tissue tensioning.</description><subject>anatomy trains</subject><subject>fascia</subject><subject>Fascia - physiology</subject><subject>Humans</subject><subject>Muscle, Skeletal - physiology</subject><subject>myofascial continuity</subject><subject>Review</subject><subject>tension transfer</subject><issn>0021-8782</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtP3TAQhS1EBZfHgj9QRWIDi4DtOLHNAgkhXhUVG7q2Jr4T8FViUzsB3X-P4VLUInU2Ho2_OTqjQ8geo0cs1_EiwBHjohFrZMZEo0tZK7pOZpRyViqp-CbZSmlBKauoFhtkk8vcUy5n5OeNHzEOU7JTD7HoQrRYjBF8GlxKLvgC-uAfimEZOkjWQV_YR3A-nRRQpGUacYDR2SLis8OXHfKtgz7h7se7TX5dXtyfX5e3d1c352e3pa2zgbLSjahlrYHatuKKS8sE5bTLQ2BKz7kG2bU4b3WLVZtLabR5JoRtGpRVtU1OV7pPUzvg3KLPlnvzFN0AcWkCOPPvj3eP5iE8m7oSrJYqCxx8CMTwe8I0mnyuxb4Hj2FKhkmlabb5ju5_QRdhij6f90YpVte80pk6XFE2hpQidp9mGDVvIeUtMO8hZfb73-4_yT-pZOB4Bby4Hpf_VzI_7s5Wkq9zc5ye</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Krause, Frieder</creator><creator>Wilke, Jan</creator><creator>Vogt, Lutz</creator><creator>Banzer, Winfried</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201606</creationdate><title>Intermuscular force transmission along myofascial chains: a systematic review</title><author>Krause, Frieder ; Wilke, Jan ; Vogt, Lutz ; Banzer, Winfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5094-39645759a0cb32827c14020f457a189d29a7fbedb9be3bbbb89ec9a744c66e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>anatomy trains</topic><topic>fascia</topic><topic>Fascia - physiology</topic><topic>Humans</topic><topic>Muscle, Skeletal - physiology</topic><topic>myofascial continuity</topic><topic>Review</topic><topic>tension transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krause, Frieder</creatorcontrib><creatorcontrib>Wilke, Jan</creatorcontrib><creatorcontrib>Vogt, Lutz</creatorcontrib><creatorcontrib>Banzer, Winfried</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krause, Frieder</au><au>Wilke, Jan</au><au>Vogt, Lutz</au><au>Banzer, Winfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermuscular force transmission along myofascial chains: a systematic review</atitle><jtitle>Journal of anatomy</jtitle><addtitle>J Anat</addtitle><date>2016-06</date><risdate>2016</risdate><volume>228</volume><issue>6</issue><spage>910</spage><epage>918</epage><pages>910-918</pages><issn>0021-8782</issn><eissn>1469-7580</eissn><coden>JOANAY</coden><abstract>The present review aims to provide a systematic overview on tensile transmission along myofascial chains based on anatomical dissection studies and in vivo experiments. Evidence for the existence of myofascial chains is growing, and the capability of force transmission via myofascial chains has been hypothesized. However, there is still a lack of evidence concerning the functional significance and capability for force transfer. A systematic literature research was conducted using MEDLINE (Pubmed), ScienceDirect and Google Scholar. Studied myofascial chains encompassed the superficial backline (SBL), the back functional line (BFL) and the front functional line (FFL). Peer‐reviewed human dissection studies as well as in vivo experiments reporting intermuscular tension transfer between the constituents of a myofascial chain were included. To assess methodic quality, two independent investigators rated studies by means of validated assessment tools (QUACS and PEDro Scale). The literature research identified 1022 articles. Nine studies (moderate to excellent methodological quality) were included. Concerning the SBL and the BFL, there is moderate evidence for force transfer at all three transitions (based on six studies), and one of two transitions (three studies). One study yields moderate evidence for a slight, but not significant force transfer at one transition in the FFL. The findings of the present study indicate that tension can be transferred between some of the examined adjacent structures. Force transfer might have an impact in overuse conditions as well as on sports performance. However, different methods of force application and measurement hinder the comparability of results. Considering anatomical variations in the degree of continuity and histological differences of the linking structures is crucial for interpretation. Future studies should focus on the in vivo function of myofascial continuity during isolated active or passive tissue tensioning.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27001027</pmid><doi>10.1111/joa.12464</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8782 |
ispartof | Journal of anatomy, 2016-06, Vol.228 (6), p.910-918 |
issn | 0021-8782 1469-7580 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5341578 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | anatomy trains fascia Fascia - physiology Humans Muscle, Skeletal - physiology myofascial continuity Review tension transfer |
title | Intermuscular force transmission along myofascial chains: a systematic review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermuscular%20force%20transmission%20along%20myofascial%20chains:%20a%20systematic%20review&rft.jtitle=Journal%20of%20anatomy&rft.au=Krause,%20Frieder&rft.date=2016-06&rft.volume=228&rft.issue=6&rft.spage=910&rft.epage=918&rft.pages=910-918&rft.issn=0021-8782&rft.eissn=1469-7580&rft.coden=JOANAY&rft_id=info:doi/10.1111/joa.12464&rft_dat=%3Cproquest_pubme%3E1789039678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788155239&rft_id=info:pmid/27001027&rfr_iscdi=true |