The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI
The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2017-03, Vol.173 (3), p.1636-1647 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1647 |
---|---|
container_issue | 3 |
container_start_page | 1636 |
container_title | Plant physiology (Bethesda) |
container_volume | 173 |
creator | Shimakawa, Ginga Ishizaki, Kimitsune Tsukamoto, Shigeyuki Tanaka, Moeko Sejima, Takehiro Miyake, Chikahiro |
description | The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF. |
doi_str_mv | 10.1104/pp.16.01038 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24902390</jstor_id><sourcerecordid>24902390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-9a3b375603c2d8b5239b90493ae89f547757d989a11ccba1c03d5469c9b83f013</originalsourceid><addsrcrecordid>eNpVkU1PxCAQhonR6Lp68qzhaKK7DqW0cDExfidrNFHPhFLqYrqlArvGfy-6fnKAGd4nMwMvQjsExoRAftT3Y1KMgQDlK2hAGM1GGcv5KhoApBg4FxtoM4RnACCU5OtoI-MJExkMUPMwNXhiF8a_Oh8P8Y3yeqq6aNUhPvPpPuCTNhrfqZgSfN4aHb3r8EXrXvFjsN0TVilRC1db-yHceReN7XB0y1BHfHd_vYXWGtUGs_11DtHjxfnD6dVocnt5fXoyGWlGaBwJRStasgKozmpesYyKSkAuqDJcNCwvS1bWggtFiNaVIhpozfJCaFFx2qTXDdHxsm4_r2am1qaLXrWy93am_Jt0ysr_Smen8sktJKOUF2kbov2vAt69zE2IcmaDNm2rOuPmQZJEpQWiTOjBEtXeheBN89OGgPxwRva9JIX8dCbRe38n-2G_rUjA7hJ4DtH5Xz0XkL4B6DtagZNG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865555097</pqid></control><display><type>article</type><title>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shimakawa, Ginga ; Ishizaki, Kimitsune ; Tsukamoto, Shigeyuki ; Tanaka, Moeko ; Sejima, Takehiro ; Miyake, Chikahiro</creator><creatorcontrib>Shimakawa, Ginga ; Ishizaki, Kimitsune ; Tsukamoto, Shigeyuki ; Tanaka, Moeko ; Sejima, Takehiro ; Miyake, Chikahiro</creatorcontrib><description>The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.01038</identifier><identifier>PMID: 28153920</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>BIOCHEMISTRY AND METABOLISM ; Chlorophyll - metabolism ; Cytochrome b6f Complex - genetics ; Cytochrome b6f Complex - metabolism ; Electron Transport - genetics ; Flavoproteins - genetics ; Flavoproteins - metabolism ; Gene Expression Regulation, Plant ; Light ; Marchantia - genetics ; Marchantia - metabolism ; Mutation ; Oxygen - metabolism ; Photosynthesis - genetics ; Photosynthesis - radiation effects ; Photosystem I Protein Complex - genetics ; Photosystem I Protein Complex - metabolism ; Photosystem II Protein Complex - genetics ; Photosystem II Protein Complex - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Proton-Motive Force - radiation effects ; Reverse Transcriptase Polymerase Chain Reaction ; Time Factors</subject><ispartof>Plant physiology (Bethesda), 2017-03, Vol.173 (3), p.1636-1647</ispartof><rights>Copyright © 2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-9a3b375603c2d8b5239b90493ae89f547757d989a11ccba1c03d5469c9b83f013</citedby><orcidid>0000-0003-0504-8196 ; 0000-0002-2426-2377 ; 0000-0002-5318-3707 ; 0000-0002-8557-2096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24902390$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24902390$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28153920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Tsukamoto, Shigeyuki</creatorcontrib><creatorcontrib>Tanaka, Moeko</creatorcontrib><creatorcontrib>Sejima, Takehiro</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><title>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.</description><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Chlorophyll - metabolism</subject><subject>Cytochrome b6f Complex - genetics</subject><subject>Cytochrome b6f Complex - metabolism</subject><subject>Electron Transport - genetics</subject><subject>Flavoproteins - genetics</subject><subject>Flavoproteins - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Light</subject><subject>Marchantia - genetics</subject><subject>Marchantia - metabolism</subject><subject>Mutation</subject><subject>Oxygen - metabolism</subject><subject>Photosynthesis - genetics</subject><subject>Photosynthesis - radiation effects</subject><subject>Photosystem I Protein Complex - genetics</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II Protein Complex - genetics</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Proton-Motive Force - radiation effects</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Time Factors</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PxCAQhonR6Lp68qzhaKK7DqW0cDExfidrNFHPhFLqYrqlArvGfy-6fnKAGd4nMwMvQjsExoRAftT3Y1KMgQDlK2hAGM1GGcv5KhoApBg4FxtoM4RnACCU5OtoI-MJExkMUPMwNXhiF8a_Oh8P8Y3yeqq6aNUhPvPpPuCTNhrfqZgSfN4aHb3r8EXrXvFjsN0TVilRC1db-yHceReN7XB0y1BHfHd_vYXWGtUGs_11DtHjxfnD6dVocnt5fXoyGWlGaBwJRStasgKozmpesYyKSkAuqDJcNCwvS1bWggtFiNaVIhpozfJCaFFx2qTXDdHxsm4_r2am1qaLXrWy93am_Jt0ysr_Smen8sktJKOUF2kbov2vAt69zE2IcmaDNm2rOuPmQZJEpQWiTOjBEtXeheBN89OGgPxwRva9JIX8dCbRe38n-2G_rUjA7hJ4DtH5Xz0XkL4B6DtagZNG</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Shimakawa, Ginga</creator><creator>Ishizaki, Kimitsune</creator><creator>Tsukamoto, Shigeyuki</creator><creator>Tanaka, Moeko</creator><creator>Sejima, Takehiro</creator><creator>Miyake, Chikahiro</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0504-8196</orcidid><orcidid>https://orcid.org/0000-0002-2426-2377</orcidid><orcidid>https://orcid.org/0000-0002-5318-3707</orcidid><orcidid>https://orcid.org/0000-0002-8557-2096</orcidid></search><sort><creationdate>20170301</creationdate><title>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</title><author>Shimakawa, Ginga ; Ishizaki, Kimitsune ; Tsukamoto, Shigeyuki ; Tanaka, Moeko ; Sejima, Takehiro ; Miyake, Chikahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-9a3b375603c2d8b5239b90493ae89f547757d989a11ccba1c03d5469c9b83f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Chlorophyll - metabolism</topic><topic>Cytochrome b6f Complex - genetics</topic><topic>Cytochrome b6f Complex - metabolism</topic><topic>Electron Transport - genetics</topic><topic>Flavoproteins - genetics</topic><topic>Flavoproteins - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Light</topic><topic>Marchantia - genetics</topic><topic>Marchantia - metabolism</topic><topic>Mutation</topic><topic>Oxygen - metabolism</topic><topic>Photosynthesis - genetics</topic><topic>Photosynthesis - radiation effects</topic><topic>Photosystem I Protein Complex - genetics</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II Protein Complex - genetics</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Proton-Motive Force - radiation effects</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Tsukamoto, Shigeyuki</creatorcontrib><creatorcontrib>Tanaka, Moeko</creatorcontrib><creatorcontrib>Sejima, Takehiro</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimakawa, Ginga</au><au>Ishizaki, Kimitsune</au><au>Tsukamoto, Shigeyuki</au><au>Tanaka, Moeko</au><au>Sejima, Takehiro</au><au>Miyake, Chikahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>173</volume><issue>3</issue><spage>1636</spage><epage>1647</epage><pages>1636-1647</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28153920</pmid><doi>10.1104/pp.16.01038</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0504-8196</orcidid><orcidid>https://orcid.org/0000-0002-2426-2377</orcidid><orcidid>https://orcid.org/0000-0002-5318-3707</orcidid><orcidid>https://orcid.org/0000-0002-8557-2096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2017-03, Vol.173 (3), p.1636-1647 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338653 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | BIOCHEMISTRY AND METABOLISM Chlorophyll - metabolism Cytochrome b6f Complex - genetics Cytochrome b6f Complex - metabolism Electron Transport - genetics Flavoproteins - genetics Flavoproteins - metabolism Gene Expression Regulation, Plant Light Marchantia - genetics Marchantia - metabolism Mutation Oxygen - metabolism Photosynthesis - genetics Photosynthesis - radiation effects Photosystem I Protein Complex - genetics Photosystem I Protein Complex - metabolism Photosystem II Protein Complex - genetics Photosystem II Protein Complex - metabolism Plant Proteins - genetics Plant Proteins - metabolism Proton-Motive Force - radiation effects Reverse Transcriptase Polymerase Chain Reaction Time Factors |
title | The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Liverwort,%20Marchantia,%20Drives%20Alternative%20Electron%20Flow%20Using%20a%20Flavodiiron%20Protein%20to%20Protect%20PSI&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Shimakawa,%20Ginga&rft.date=2017-03-01&rft.volume=173&rft.issue=3&rft.spage=1636&rft.epage=1647&rft.pages=1636-1647&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.01038&rft_dat=%3Cjstor_pubme%3E24902390%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865555097&rft_id=info:pmid/28153920&rft_jstor_id=24902390&rfr_iscdi=true |