The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI

The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2017-03, Vol.173 (3), p.1636-1647
Hauptverfasser: Shimakawa, Ginga, Ishizaki, Kimitsune, Tsukamoto, Shigeyuki, Tanaka, Moeko, Sejima, Takehiro, Miyake, Chikahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1647
container_issue 3
container_start_page 1636
container_title Plant physiology (Bethesda)
container_volume 173
creator Shimakawa, Ginga
Ishizaki, Kimitsune
Tsukamoto, Shigeyuki
Tanaka, Moeko
Sejima, Takehiro
Miyake, Chikahiro
description The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.
doi_str_mv 10.1104/pp.16.01038
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24902390</jstor_id><sourcerecordid>24902390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-9a3b375603c2d8b5239b90493ae89f547757d989a11ccba1c03d5469c9b83f013</originalsourceid><addsrcrecordid>eNpVkU1PxCAQhonR6Lp68qzhaKK7DqW0cDExfidrNFHPhFLqYrqlArvGfy-6fnKAGd4nMwMvQjsExoRAftT3Y1KMgQDlK2hAGM1GGcv5KhoApBg4FxtoM4RnACCU5OtoI-MJExkMUPMwNXhiF8a_Oh8P8Y3yeqq6aNUhPvPpPuCTNhrfqZgSfN4aHb3r8EXrXvFjsN0TVilRC1db-yHceReN7XB0y1BHfHd_vYXWGtUGs_11DtHjxfnD6dVocnt5fXoyGWlGaBwJRStasgKozmpesYyKSkAuqDJcNCwvS1bWggtFiNaVIhpozfJCaFFx2qTXDdHxsm4_r2am1qaLXrWy93am_Jt0ysr_Smen8sktJKOUF2kbov2vAt69zE2IcmaDNm2rOuPmQZJEpQWiTOjBEtXeheBN89OGgPxwRva9JIX8dCbRe38n-2G_rUjA7hJ4DtH5Xz0XkL4B6DtagZNG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865555097</pqid></control><display><type>article</type><title>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shimakawa, Ginga ; Ishizaki, Kimitsune ; Tsukamoto, Shigeyuki ; Tanaka, Moeko ; Sejima, Takehiro ; Miyake, Chikahiro</creator><creatorcontrib>Shimakawa, Ginga ; Ishizaki, Kimitsune ; Tsukamoto, Shigeyuki ; Tanaka, Moeko ; Sejima, Takehiro ; Miyake, Chikahiro</creatorcontrib><description>The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.01038</identifier><identifier>PMID: 28153920</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>BIOCHEMISTRY AND METABOLISM ; Chlorophyll - metabolism ; Cytochrome b6f Complex - genetics ; Cytochrome b6f Complex - metabolism ; Electron Transport - genetics ; Flavoproteins - genetics ; Flavoproteins - metabolism ; Gene Expression Regulation, Plant ; Light ; Marchantia - genetics ; Marchantia - metabolism ; Mutation ; Oxygen - metabolism ; Photosynthesis - genetics ; Photosynthesis - radiation effects ; Photosystem I Protein Complex - genetics ; Photosystem I Protein Complex - metabolism ; Photosystem II Protein Complex - genetics ; Photosystem II Protein Complex - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Proton-Motive Force - radiation effects ; Reverse Transcriptase Polymerase Chain Reaction ; Time Factors</subject><ispartof>Plant physiology (Bethesda), 2017-03, Vol.173 (3), p.1636-1647</ispartof><rights>Copyright © 2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-9a3b375603c2d8b5239b90493ae89f547757d989a11ccba1c03d5469c9b83f013</citedby><orcidid>0000-0003-0504-8196 ; 0000-0002-2426-2377 ; 0000-0002-5318-3707 ; 0000-0002-8557-2096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24902390$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24902390$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28153920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Tsukamoto, Shigeyuki</creatorcontrib><creatorcontrib>Tanaka, Moeko</creatorcontrib><creatorcontrib>Sejima, Takehiro</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><title>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.</description><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Chlorophyll - metabolism</subject><subject>Cytochrome b6f Complex - genetics</subject><subject>Cytochrome b6f Complex - metabolism</subject><subject>Electron Transport - genetics</subject><subject>Flavoproteins - genetics</subject><subject>Flavoproteins - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Light</subject><subject>Marchantia - genetics</subject><subject>Marchantia - metabolism</subject><subject>Mutation</subject><subject>Oxygen - metabolism</subject><subject>Photosynthesis - genetics</subject><subject>Photosynthesis - radiation effects</subject><subject>Photosystem I Protein Complex - genetics</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II Protein Complex - genetics</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Proton-Motive Force - radiation effects</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Time Factors</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PxCAQhonR6Lp68qzhaKK7DqW0cDExfidrNFHPhFLqYrqlArvGfy-6fnKAGd4nMwMvQjsExoRAftT3Y1KMgQDlK2hAGM1GGcv5KhoApBg4FxtoM4RnACCU5OtoI-MJExkMUPMwNXhiF8a_Oh8P8Y3yeqq6aNUhPvPpPuCTNhrfqZgSfN4aHb3r8EXrXvFjsN0TVilRC1db-yHceReN7XB0y1BHfHd_vYXWGtUGs_11DtHjxfnD6dVocnt5fXoyGWlGaBwJRStasgKozmpesYyKSkAuqDJcNCwvS1bWggtFiNaVIhpozfJCaFFx2qTXDdHxsm4_r2am1qaLXrWy93am_Jt0ysr_Smen8sktJKOUF2kbov2vAt69zE2IcmaDNm2rOuPmQZJEpQWiTOjBEtXeheBN89OGgPxwRva9JIX8dCbRe38n-2G_rUjA7hJ4DtH5Xz0XkL4B6DtagZNG</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Shimakawa, Ginga</creator><creator>Ishizaki, Kimitsune</creator><creator>Tsukamoto, Shigeyuki</creator><creator>Tanaka, Moeko</creator><creator>Sejima, Takehiro</creator><creator>Miyake, Chikahiro</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0504-8196</orcidid><orcidid>https://orcid.org/0000-0002-2426-2377</orcidid><orcidid>https://orcid.org/0000-0002-5318-3707</orcidid><orcidid>https://orcid.org/0000-0002-8557-2096</orcidid></search><sort><creationdate>20170301</creationdate><title>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</title><author>Shimakawa, Ginga ; Ishizaki, Kimitsune ; Tsukamoto, Shigeyuki ; Tanaka, Moeko ; Sejima, Takehiro ; Miyake, Chikahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-9a3b375603c2d8b5239b90493ae89f547757d989a11ccba1c03d5469c9b83f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Chlorophyll - metabolism</topic><topic>Cytochrome b6f Complex - genetics</topic><topic>Cytochrome b6f Complex - metabolism</topic><topic>Electron Transport - genetics</topic><topic>Flavoproteins - genetics</topic><topic>Flavoproteins - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Light</topic><topic>Marchantia - genetics</topic><topic>Marchantia - metabolism</topic><topic>Mutation</topic><topic>Oxygen - metabolism</topic><topic>Photosynthesis - genetics</topic><topic>Photosynthesis - radiation effects</topic><topic>Photosystem I Protein Complex - genetics</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II Protein Complex - genetics</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Proton-Motive Force - radiation effects</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimakawa, Ginga</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Tsukamoto, Shigeyuki</creatorcontrib><creatorcontrib>Tanaka, Moeko</creatorcontrib><creatorcontrib>Sejima, Takehiro</creatorcontrib><creatorcontrib>Miyake, Chikahiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimakawa, Ginga</au><au>Ishizaki, Kimitsune</au><au>Tsukamoto, Shigeyuki</au><au>Tanaka, Moeko</au><au>Sejima, Takehiro</au><au>Miyake, Chikahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>173</volume><issue>3</issue><spage>1636</spage><epage>1647</epage><pages>1636-1647</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha. A mutant deficient in the FLV1 isozyme (∆MpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ∆MpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ∆MpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ∆MpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28153920</pmid><doi>10.1104/pp.16.01038</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0504-8196</orcidid><orcidid>https://orcid.org/0000-0002-2426-2377</orcidid><orcidid>https://orcid.org/0000-0002-5318-3707</orcidid><orcidid>https://orcid.org/0000-0002-8557-2096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2017-03, Vol.173 (3), p.1636-1647
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338653
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects BIOCHEMISTRY AND METABOLISM
Chlorophyll - metabolism
Cytochrome b6f Complex - genetics
Cytochrome b6f Complex - metabolism
Electron Transport - genetics
Flavoproteins - genetics
Flavoproteins - metabolism
Gene Expression Regulation, Plant
Light
Marchantia - genetics
Marchantia - metabolism
Mutation
Oxygen - metabolism
Photosynthesis - genetics
Photosynthesis - radiation effects
Photosystem I Protein Complex - genetics
Photosystem I Protein Complex - metabolism
Photosystem II Protein Complex - genetics
Photosystem II Protein Complex - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Proton-Motive Force - radiation effects
Reverse Transcriptase Polymerase Chain Reaction
Time Factors
title The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Liverwort,%20Marchantia,%20Drives%20Alternative%20Electron%20Flow%20Using%20a%20Flavodiiron%20Protein%20to%20Protect%20PSI&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Shimakawa,%20Ginga&rft.date=2017-03-01&rft.volume=173&rft.issue=3&rft.spage=1636&rft.epage=1647&rft.pages=1636-1647&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.01038&rft_dat=%3Cjstor_pubme%3E24902390%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865555097&rft_id=info:pmid/28153920&rft_jstor_id=24902390&rfr_iscdi=true