HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis
Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-02, Vol.114 (8), p.2084-2089 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2089 |
---|---|
container_issue | 8 |
container_start_page | 2084 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Nawkar, Ganesh M. Kang, Chang Ho Maibam, Punyakishore Park, Joung Hun Jung, Young Jun Chae, Ho Byoung Chi, Yong Hun Jung, In Jung Kim, Woe Yeon Yun, Dae-Jin Lee, Sang Yeol |
description | Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression. |
doi_str_mv | 10.1073/pnas.1609844114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479318</jstor_id><sourcerecordid>26479318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</originalsourceid><addsrcrecordid>eNpdkU1rFTEUhoMo9lpdu1ICblx02nxPsimUorZQcNMuXIXMTDI3l9xkTGYK_fdmuLXVrpJwnryccx4APmJ0ilFLz6ZoyikWSEnGMGavwAYjhRvBFHoNNgiRtpGMsCPwrpQdQkhxid6CIyKxaFvBNiBe_eIn0MApFT_7ewuzHZdg5pRhcjD4cTvD4sdogo_jCYx2NCsWHmCf4pxTKHDeWrhEl8JgBzjlNFsfa0yZUiwW1vtFNp0f0lR8eQ_eOBOK_fB4HoO7799uL6-am58_ri8vbpqeITI3TkhuLXKoU8ZRKZChwimJySAGYoTpHCWmY6K-KWY9QYQP3AyKSSV6LCQ9BueH3Gnp9nbobe3VBD1lvzf5QSfj9f-V6Ld6TPeaU1oXJmrA18eAnH4vtsx670tvQzDRpqVoLAWXhDC-ol9eoLu05LqxlWoJb0nLUKXODlSfUynZuqdmMNKrS7261M8u64_P_87wxP-VV4FPB2BXqq_numCtoljSP-8fpjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872572740</pqid></control><display><type>article</type><title>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nawkar, Ganesh M. ; Kang, Chang Ho ; Maibam, Punyakishore ; Park, Joung Hun ; Jung, Young Jun ; Chae, Ho Byoung ; Chi, Yong Hun ; Jung, In Jung ; Kim, Woe Yeon ; Yun, Dae-Jin ; Lee, Sang Yeol</creator><creatorcontrib>Nawkar, Ganesh M. ; Kang, Chang Ho ; Maibam, Punyakishore ; Park, Joung Hun ; Jung, Young Jun ; Chae, Ho Byoung ; Chi, Yong Hun ; Jung, In Jung ; Kim, Woe Yeon ; Yun, Dae-Jin ; Lee, Sang Yeol</creatorcontrib><description>Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609844114</identifier><identifier>PMID: 28167764</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Environmental changes ; Environmental conditions ; Environmental stress ; Gene expression ; Light ; Light intensity ; Mutation ; Plant growth ; Proteins ; Stress response ; Survival</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.2084-2089</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</citedby><cites>FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479318$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479318$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28167764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nawkar, Ganesh M.</creatorcontrib><creatorcontrib>Kang, Chang Ho</creatorcontrib><creatorcontrib>Maibam, Punyakishore</creatorcontrib><creatorcontrib>Park, Joung Hun</creatorcontrib><creatorcontrib>Jung, Young Jun</creatorcontrib><creatorcontrib>Chae, Ho Byoung</creatorcontrib><creatorcontrib>Chi, Yong Hun</creatorcontrib><creatorcontrib>Jung, In Jung</creatorcontrib><creatorcontrib>Kim, Woe Yeon</creatorcontrib><creatorcontrib>Yun, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang Yeol</creatorcontrib><title>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.</description><subject>Biological Sciences</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Environmental stress</subject><subject>Gene expression</subject><subject>Light</subject><subject>Light intensity</subject><subject>Mutation</subject><subject>Plant growth</subject><subject>Proteins</subject><subject>Stress response</subject><subject>Survival</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rFTEUhoMo9lpdu1ICblx02nxPsimUorZQcNMuXIXMTDI3l9xkTGYK_fdmuLXVrpJwnryccx4APmJ0ilFLz6ZoyikWSEnGMGavwAYjhRvBFHoNNgiRtpGMsCPwrpQdQkhxid6CIyKxaFvBNiBe_eIn0MApFT_7ewuzHZdg5pRhcjD4cTvD4sdogo_jCYx2NCsWHmCf4pxTKHDeWrhEl8JgBzjlNFsfa0yZUiwW1vtFNp0f0lR8eQ_eOBOK_fB4HoO7799uL6-am58_ri8vbpqeITI3TkhuLXKoU8ZRKZChwimJySAGYoTpHCWmY6K-KWY9QYQP3AyKSSV6LCQ9BueH3Gnp9nbobe3VBD1lvzf5QSfj9f-V6Ld6TPeaU1oXJmrA18eAnH4vtsx670tvQzDRpqVoLAWXhDC-ol9eoLu05LqxlWoJb0nLUKXODlSfUynZuqdmMNKrS7261M8u64_P_87wxP-VV4FPB2BXqq_numCtoljSP-8fpjQ</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Nawkar, Ganesh M.</creator><creator>Kang, Chang Ho</creator><creator>Maibam, Punyakishore</creator><creator>Park, Joung Hun</creator><creator>Jung, Young Jun</creator><creator>Chae, Ho Byoung</creator><creator>Chi, Yong Hun</creator><creator>Jung, In Jung</creator><creator>Kim, Woe Yeon</creator><creator>Yun, Dae-Jin</creator><creator>Lee, Sang Yeol</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170221</creationdate><title>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</title><author>Nawkar, Ganesh M. ; Kang, Chang Ho ; Maibam, Punyakishore ; Park, Joung Hun ; Jung, Young Jun ; Chae, Ho Byoung ; Chi, Yong Hun ; Jung, In Jung ; Kim, Woe Yeon ; Yun, Dae-Jin ; Lee, Sang Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological Sciences</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Environmental stress</topic><topic>Gene expression</topic><topic>Light</topic><topic>Light intensity</topic><topic>Mutation</topic><topic>Plant growth</topic><topic>Proteins</topic><topic>Stress response</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nawkar, Ganesh M.</creatorcontrib><creatorcontrib>Kang, Chang Ho</creatorcontrib><creatorcontrib>Maibam, Punyakishore</creatorcontrib><creatorcontrib>Park, Joung Hun</creatorcontrib><creatorcontrib>Jung, Young Jun</creatorcontrib><creatorcontrib>Chae, Ho Byoung</creatorcontrib><creatorcontrib>Chi, Yong Hun</creatorcontrib><creatorcontrib>Jung, In Jung</creatorcontrib><creatorcontrib>Kim, Woe Yeon</creatorcontrib><creatorcontrib>Yun, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang Yeol</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nawkar, Ganesh M.</au><au>Kang, Chang Ho</au><au>Maibam, Punyakishore</au><au>Park, Joung Hun</au><au>Jung, Young Jun</au><au>Chae, Ho Byoung</au><au>Chi, Yong Hun</au><au>Jung, In Jung</au><au>Kim, Woe Yeon</au><au>Yun, Dae-Jin</au><au>Lee, Sang Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>114</volume><issue>8</issue><spage>2084</spage><epage>2089</epage><pages>2084-2089</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28167764</pmid><doi>10.1073/pnas.1609844114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.2084-2089 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338426 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Environmental changes Environmental conditions Environmental stress Gene expression Light Light intensity Mutation Plant growth Proteins Stress response Survival |
title | HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HY5,%20a%20positive%20regulator%20of%20light%20signaling,%20negatively%20controls%20the%20unfolded%20protein%20response%20in%20Arabidopsis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nawkar,%20Ganesh%20M.&rft.date=2017-02-21&rft.volume=114&rft.issue=8&rft.spage=2084&rft.epage=2089&rft.pages=2084-2089&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609844114&rft_dat=%3Cjstor_pubme%3E26479318%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872572740&rft_id=info:pmid/28167764&rft_jstor_id=26479318&rfr_iscdi=true |