HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis

Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-02, Vol.114 (8), p.2084-2089
Hauptverfasser: Nawkar, Ganesh M., Kang, Chang Ho, Maibam, Punyakishore, Park, Joung Hun, Jung, Young Jun, Chae, Ho Byoung, Chi, Yong Hun, Jung, In Jung, Kim, Woe Yeon, Yun, Dae-Jin, Lee, Sang Yeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2089
container_issue 8
container_start_page 2084
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Nawkar, Ganesh M.
Kang, Chang Ho
Maibam, Punyakishore
Park, Joung Hun
Jung, Young Jun
Chae, Ho Byoung
Chi, Yong Hun
Jung, In Jung
Kim, Woe Yeon
Yun, Dae-Jin
Lee, Sang Yeol
description Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.
doi_str_mv 10.1073/pnas.1609844114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479318</jstor_id><sourcerecordid>26479318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</originalsourceid><addsrcrecordid>eNpdkU1rFTEUhoMo9lpdu1ICblx02nxPsimUorZQcNMuXIXMTDI3l9xkTGYK_fdmuLXVrpJwnryccx4APmJ0ilFLz6ZoyikWSEnGMGavwAYjhRvBFHoNNgiRtpGMsCPwrpQdQkhxid6CIyKxaFvBNiBe_eIn0MApFT_7ewuzHZdg5pRhcjD4cTvD4sdogo_jCYx2NCsWHmCf4pxTKHDeWrhEl8JgBzjlNFsfa0yZUiwW1vtFNp0f0lR8eQ_eOBOK_fB4HoO7799uL6-am58_ri8vbpqeITI3TkhuLXKoU8ZRKZChwimJySAGYoTpHCWmY6K-KWY9QYQP3AyKSSV6LCQ9BueH3Gnp9nbobe3VBD1lvzf5QSfj9f-V6Ld6TPeaU1oXJmrA18eAnH4vtsx670tvQzDRpqVoLAWXhDC-ol9eoLu05LqxlWoJb0nLUKXODlSfUynZuqdmMNKrS7261M8u64_P_87wxP-VV4FPB2BXqq_numCtoljSP-8fpjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872572740</pqid></control><display><type>article</type><title>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nawkar, Ganesh M. ; Kang, Chang Ho ; Maibam, Punyakishore ; Park, Joung Hun ; Jung, Young Jun ; Chae, Ho Byoung ; Chi, Yong Hun ; Jung, In Jung ; Kim, Woe Yeon ; Yun, Dae-Jin ; Lee, Sang Yeol</creator><creatorcontrib>Nawkar, Ganesh M. ; Kang, Chang Ho ; Maibam, Punyakishore ; Park, Joung Hun ; Jung, Young Jun ; Chae, Ho Byoung ; Chi, Yong Hun ; Jung, In Jung ; Kim, Woe Yeon ; Yun, Dae-Jin ; Lee, Sang Yeol</creatorcontrib><description>Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609844114</identifier><identifier>PMID: 28167764</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Environmental changes ; Environmental conditions ; Environmental stress ; Gene expression ; Light ; Light intensity ; Mutation ; Plant growth ; Proteins ; Stress response ; Survival</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.2084-2089</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</citedby><cites>FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479318$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479318$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28167764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nawkar, Ganesh M.</creatorcontrib><creatorcontrib>Kang, Chang Ho</creatorcontrib><creatorcontrib>Maibam, Punyakishore</creatorcontrib><creatorcontrib>Park, Joung Hun</creatorcontrib><creatorcontrib>Jung, Young Jun</creatorcontrib><creatorcontrib>Chae, Ho Byoung</creatorcontrib><creatorcontrib>Chi, Yong Hun</creatorcontrib><creatorcontrib>Jung, In Jung</creatorcontrib><creatorcontrib>Kim, Woe Yeon</creatorcontrib><creatorcontrib>Yun, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang Yeol</creatorcontrib><title>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.</description><subject>Biological Sciences</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Environmental stress</subject><subject>Gene expression</subject><subject>Light</subject><subject>Light intensity</subject><subject>Mutation</subject><subject>Plant growth</subject><subject>Proteins</subject><subject>Stress response</subject><subject>Survival</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rFTEUhoMo9lpdu1ICblx02nxPsimUorZQcNMuXIXMTDI3l9xkTGYK_fdmuLXVrpJwnryccx4APmJ0ilFLz6ZoyikWSEnGMGavwAYjhRvBFHoNNgiRtpGMsCPwrpQdQkhxid6CIyKxaFvBNiBe_eIn0MApFT_7ewuzHZdg5pRhcjD4cTvD4sdogo_jCYx2NCsWHmCf4pxTKHDeWrhEl8JgBzjlNFsfa0yZUiwW1vtFNp0f0lR8eQ_eOBOK_fB4HoO7799uL6-am58_ri8vbpqeITI3TkhuLXKoU8ZRKZChwimJySAGYoTpHCWmY6K-KWY9QYQP3AyKSSV6LCQ9BueH3Gnp9nbobe3VBD1lvzf5QSfj9f-V6Ld6TPeaU1oXJmrA18eAnH4vtsx670tvQzDRpqVoLAWXhDC-ol9eoLu05LqxlWoJb0nLUKXODlSfUynZuqdmMNKrS7261M8u64_P_87wxP-VV4FPB2BXqq_numCtoljSP-8fpjQ</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Nawkar, Ganesh M.</creator><creator>Kang, Chang Ho</creator><creator>Maibam, Punyakishore</creator><creator>Park, Joung Hun</creator><creator>Jung, Young Jun</creator><creator>Chae, Ho Byoung</creator><creator>Chi, Yong Hun</creator><creator>Jung, In Jung</creator><creator>Kim, Woe Yeon</creator><creator>Yun, Dae-Jin</creator><creator>Lee, Sang Yeol</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170221</creationdate><title>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</title><author>Nawkar, Ganesh M. ; Kang, Chang Ho ; Maibam, Punyakishore ; Park, Joung Hun ; Jung, Young Jun ; Chae, Ho Byoung ; Chi, Yong Hun ; Jung, In Jung ; Kim, Woe Yeon ; Yun, Dae-Jin ; Lee, Sang Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f685ee0f0b9af3860a36f9812d6d2a6abf32ab462d6314c2025d5ad94896c1683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological Sciences</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Environmental stress</topic><topic>Gene expression</topic><topic>Light</topic><topic>Light intensity</topic><topic>Mutation</topic><topic>Plant growth</topic><topic>Proteins</topic><topic>Stress response</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nawkar, Ganesh M.</creatorcontrib><creatorcontrib>Kang, Chang Ho</creatorcontrib><creatorcontrib>Maibam, Punyakishore</creatorcontrib><creatorcontrib>Park, Joung Hun</creatorcontrib><creatorcontrib>Jung, Young Jun</creatorcontrib><creatorcontrib>Chae, Ho Byoung</creatorcontrib><creatorcontrib>Chi, Yong Hun</creatorcontrib><creatorcontrib>Jung, In Jung</creatorcontrib><creatorcontrib>Kim, Woe Yeon</creatorcontrib><creatorcontrib>Yun, Dae-Jin</creatorcontrib><creatorcontrib>Lee, Sang Yeol</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nawkar, Ganesh M.</au><au>Kang, Chang Ho</au><au>Maibam, Punyakishore</au><au>Park, Joung Hun</au><au>Jung, Young Jun</au><au>Chae, Ho Byoung</au><au>Chi, Yong Hun</au><au>Jung, In Jung</au><au>Kim, Woe Yeon</au><au>Yun, Dae-Jin</au><au>Lee, Sang Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>114</volume><issue>8</issue><spage>2084</spage><epage>2089</epage><pages>2084-2089</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28167764</pmid><doi>10.1073/pnas.1609844114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.2084-2089
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338426
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Environmental changes
Environmental conditions
Environmental stress
Gene expression
Light
Light intensity
Mutation
Plant growth
Proteins
Stress response
Survival
title HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HY5,%20a%20positive%20regulator%20of%20light%20signaling,%20negatively%20controls%20the%20unfolded%20protein%20response%20in%20Arabidopsis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nawkar,%20Ganesh%20M.&rft.date=2017-02-21&rft.volume=114&rft.issue=8&rft.spage=2084&rft.epage=2089&rft.pages=2084-2089&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609844114&rft_dat=%3Cjstor_pubme%3E26479318%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872572740&rft_id=info:pmid/28167764&rft_jstor_id=26479318&rfr_iscdi=true