Targeting IRE1 with small molecules counteracts progression of atherosclerosis

Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-02, Vol.114 (8), p.E1395-E1404
Hauptverfasser: Tufanli, Ozlem, Akillilar, Pelin Telkoparan, Acosta-Alvear, Diego, Kocaturk, Begum, Onat, Umut Inci, Hamid, Syed Muhammad, Çimen, Ismail, Walter, Peter, Weber, Christian, Erbay, Ebru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1404
container_issue 8
container_start_page E1395
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Tufanli, Ozlem
Akillilar, Pelin Telkoparan
Acosta-Alvear, Diego
Kocaturk, Begum
Onat, Umut Inci
Hamid, Syed Muhammad
Çimen, Ismail
Walter, Peter
Weber, Christian
Erbay, Ebru
description Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.
doi_str_mv 10.1073/pnas.1621188114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479330</jstor_id><sourcerecordid>26479330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</originalsourceid><addsrcrecordid>eNpdkctP3DAQxq2qqGy3PffUKhIXLoEZPxL7UgmtoEVCIFX0bDnG2c3Kibe2A-K_J6uly-Myc5jffPP4CPmGcIJQs9PNYNIJVhRRSkT-gcwQFJYVV_CRzABoXUpO-SH5nNIaAJSQ8IkcUomslqKaketbE5cud8OyuPxzjsVDl1dF6o33RR-8s6N3qbBhHLKLxuZUbGJYRpdSF4YitIXJKxdDsn4bu_SFHLTGJ_f1Oc_J34vz28Xv8urm1-Xi7Kq0nLNcKgNGGu54A4Jj29hGNkq1d1RQJhomreLCMGioUqoyylkAUwlnOaKlqpFsTn7udDdj07s764Ycjdeb2PUmPupgOv22MnQrvQz3WjAmOcAkcPwsEMO_0aWs-y5Z570ZXBiTRlkxitN4MaFH79B1GOMwnTdRNRVVXbMtdbqj7PSIFF27XwZBb73SW6_0i1dTx4_XN-z5_-ZMwPcdsE45xJd6xWvFGLAns6Ga6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872567735</pqid></control><display><type>article</type><title>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tufanli, Ozlem ; Akillilar, Pelin Telkoparan ; Acosta-Alvear, Diego ; Kocaturk, Begum ; Onat, Umut Inci ; Hamid, Syed Muhammad ; Çimen, Ismail ; Walter, Peter ; Weber, Christian ; Erbay, Ebru</creator><creatorcontrib>Tufanli, Ozlem ; Akillilar, Pelin Telkoparan ; Acosta-Alvear, Diego ; Kocaturk, Begum ; Onat, Umut Inci ; Hamid, Syed Muhammad ; Çimen, Ismail ; Walter, Peter ; Weber, Christian ; Erbay, Ebru</creatorcontrib><description>Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1621188114</identifier><identifier>PMID: 28137856</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atherosclerosis ; Biological Sciences ; Cellular biology ; Diabetes ; Endoplasmic reticulum ; Inflammation ; Obesity ; PNAS Plus ; Stress response</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.E1395-E1404</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</citedby><cites>FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</cites><orcidid>0000-0002-6849-708X ; 0000-0001-9584-1803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479330$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479330$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28137856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tufanli, Ozlem</creatorcontrib><creatorcontrib>Akillilar, Pelin Telkoparan</creatorcontrib><creatorcontrib>Acosta-Alvear, Diego</creatorcontrib><creatorcontrib>Kocaturk, Begum</creatorcontrib><creatorcontrib>Onat, Umut Inci</creatorcontrib><creatorcontrib>Hamid, Syed Muhammad</creatorcontrib><creatorcontrib>Çimen, Ismail</creatorcontrib><creatorcontrib>Walter, Peter</creatorcontrib><creatorcontrib>Weber, Christian</creatorcontrib><creatorcontrib>Erbay, Ebru</creatorcontrib><title>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.</description><subject>Atherosclerosis</subject><subject>Biological Sciences</subject><subject>Cellular biology</subject><subject>Diabetes</subject><subject>Endoplasmic reticulum</subject><subject>Inflammation</subject><subject>Obesity</subject><subject>PNAS Plus</subject><subject>Stress response</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctP3DAQxq2qqGy3PffUKhIXLoEZPxL7UgmtoEVCIFX0bDnG2c3Kibe2A-K_J6uly-Myc5jffPP4CPmGcIJQs9PNYNIJVhRRSkT-gcwQFJYVV_CRzABoXUpO-SH5nNIaAJSQ8IkcUomslqKaketbE5cud8OyuPxzjsVDl1dF6o33RR-8s6N3qbBhHLKLxuZUbGJYRpdSF4YitIXJKxdDsn4bu_SFHLTGJ_f1Oc_J34vz28Xv8urm1-Xi7Kq0nLNcKgNGGu54A4Jj29hGNkq1d1RQJhomreLCMGioUqoyylkAUwlnOaKlqpFsTn7udDdj07s764Ycjdeb2PUmPupgOv22MnQrvQz3WjAmOcAkcPwsEMO_0aWs-y5Z570ZXBiTRlkxitN4MaFH79B1GOMwnTdRNRVVXbMtdbqj7PSIFF27XwZBb73SW6_0i1dTx4_XN-z5_-ZMwPcdsE45xJd6xWvFGLAns6Ga6g</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Tufanli, Ozlem</creator><creator>Akillilar, Pelin Telkoparan</creator><creator>Acosta-Alvear, Diego</creator><creator>Kocaturk, Begum</creator><creator>Onat, Umut Inci</creator><creator>Hamid, Syed Muhammad</creator><creator>Çimen, Ismail</creator><creator>Walter, Peter</creator><creator>Weber, Christian</creator><creator>Erbay, Ebru</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6849-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-1803</orcidid></search><sort><creationdate>20170221</creationdate><title>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</title><author>Tufanli, Ozlem ; Akillilar, Pelin Telkoparan ; Acosta-Alvear, Diego ; Kocaturk, Begum ; Onat, Umut Inci ; Hamid, Syed Muhammad ; Çimen, Ismail ; Walter, Peter ; Weber, Christian ; Erbay, Ebru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atherosclerosis</topic><topic>Biological Sciences</topic><topic>Cellular biology</topic><topic>Diabetes</topic><topic>Endoplasmic reticulum</topic><topic>Inflammation</topic><topic>Obesity</topic><topic>PNAS Plus</topic><topic>Stress response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tufanli, Ozlem</creatorcontrib><creatorcontrib>Akillilar, Pelin Telkoparan</creatorcontrib><creatorcontrib>Acosta-Alvear, Diego</creatorcontrib><creatorcontrib>Kocaturk, Begum</creatorcontrib><creatorcontrib>Onat, Umut Inci</creatorcontrib><creatorcontrib>Hamid, Syed Muhammad</creatorcontrib><creatorcontrib>Çimen, Ismail</creatorcontrib><creatorcontrib>Walter, Peter</creatorcontrib><creatorcontrib>Weber, Christian</creatorcontrib><creatorcontrib>Erbay, Ebru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tufanli, Ozlem</au><au>Akillilar, Pelin Telkoparan</au><au>Acosta-Alvear, Diego</au><au>Kocaturk, Begum</au><au>Onat, Umut Inci</au><au>Hamid, Syed Muhammad</au><au>Çimen, Ismail</au><au>Walter, Peter</au><au>Weber, Christian</au><au>Erbay, Ebru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>114</volume><issue>8</issue><spage>E1395</spage><epage>E1404</epage><pages>E1395-E1404</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28137856</pmid><doi>10.1073/pnas.1621188114</doi><orcidid>https://orcid.org/0000-0002-6849-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-1803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.E1395-E1404
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338400
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atherosclerosis
Biological Sciences
Cellular biology
Diabetes
Endoplasmic reticulum
Inflammation
Obesity
PNAS Plus
Stress response
title Targeting IRE1 with small molecules counteracts progression of atherosclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20IRE1%20with%20small%20molecules%20counteracts%20progression%20of%20atherosclerosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tufanli,%20Ozlem&rft.date=2017-02-21&rft.volume=114&rft.issue=8&rft.spage=E1395&rft.epage=E1404&rft.pages=E1395-E1404&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1621188114&rft_dat=%3Cjstor_pubme%3E26479330%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872567735&rft_id=info:pmid/28137856&rft_jstor_id=26479330&rfr_iscdi=true