Targeting IRE1 with small molecules counteracts progression of atherosclerosis
Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-02, Vol.114 (8), p.E1395-E1404 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1404 |
---|---|
container_issue | 8 |
container_start_page | E1395 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Tufanli, Ozlem Akillilar, Pelin Telkoparan Acosta-Alvear, Diego Kocaturk, Begum Onat, Umut Inci Hamid, Syed Muhammad Çimen, Ismail Walter, Peter Weber, Christian Erbay, Ebru |
description | Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis. |
doi_str_mv | 10.1073/pnas.1621188114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479330</jstor_id><sourcerecordid>26479330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</originalsourceid><addsrcrecordid>eNpdkctP3DAQxq2qqGy3PffUKhIXLoEZPxL7UgmtoEVCIFX0bDnG2c3Kibe2A-K_J6uly-Myc5jffPP4CPmGcIJQs9PNYNIJVhRRSkT-gcwQFJYVV_CRzABoXUpO-SH5nNIaAJSQ8IkcUomslqKaketbE5cud8OyuPxzjsVDl1dF6o33RR-8s6N3qbBhHLKLxuZUbGJYRpdSF4YitIXJKxdDsn4bu_SFHLTGJ_f1Oc_J34vz28Xv8urm1-Xi7Kq0nLNcKgNGGu54A4Jj29hGNkq1d1RQJhomreLCMGioUqoyylkAUwlnOaKlqpFsTn7udDdj07s764Ycjdeb2PUmPupgOv22MnQrvQz3WjAmOcAkcPwsEMO_0aWs-y5Z570ZXBiTRlkxitN4MaFH79B1GOMwnTdRNRVVXbMtdbqj7PSIFF27XwZBb73SW6_0i1dTx4_XN-z5_-ZMwPcdsE45xJd6xWvFGLAns6Ga6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872567735</pqid></control><display><type>article</type><title>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tufanli, Ozlem ; Akillilar, Pelin Telkoparan ; Acosta-Alvear, Diego ; Kocaturk, Begum ; Onat, Umut Inci ; Hamid, Syed Muhammad ; Çimen, Ismail ; Walter, Peter ; Weber, Christian ; Erbay, Ebru</creator><creatorcontrib>Tufanli, Ozlem ; Akillilar, Pelin Telkoparan ; Acosta-Alvear, Diego ; Kocaturk, Begum ; Onat, Umut Inci ; Hamid, Syed Muhammad ; Çimen, Ismail ; Walter, Peter ; Weber, Christian ; Erbay, Ebru</creatorcontrib><description>Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1621188114</identifier><identifier>PMID: 28137856</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atherosclerosis ; Biological Sciences ; Cellular biology ; Diabetes ; Endoplasmic reticulum ; Inflammation ; Obesity ; PNAS Plus ; Stress response</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.E1395-E1404</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</citedby><cites>FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</cites><orcidid>0000-0002-6849-708X ; 0000-0001-9584-1803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479330$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479330$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28137856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tufanli, Ozlem</creatorcontrib><creatorcontrib>Akillilar, Pelin Telkoparan</creatorcontrib><creatorcontrib>Acosta-Alvear, Diego</creatorcontrib><creatorcontrib>Kocaturk, Begum</creatorcontrib><creatorcontrib>Onat, Umut Inci</creatorcontrib><creatorcontrib>Hamid, Syed Muhammad</creatorcontrib><creatorcontrib>Çimen, Ismail</creatorcontrib><creatorcontrib>Walter, Peter</creatorcontrib><creatorcontrib>Weber, Christian</creatorcontrib><creatorcontrib>Erbay, Ebru</creatorcontrib><title>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.</description><subject>Atherosclerosis</subject><subject>Biological Sciences</subject><subject>Cellular biology</subject><subject>Diabetes</subject><subject>Endoplasmic reticulum</subject><subject>Inflammation</subject><subject>Obesity</subject><subject>PNAS Plus</subject><subject>Stress response</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctP3DAQxq2qqGy3PffUKhIXLoEZPxL7UgmtoEVCIFX0bDnG2c3Kibe2A-K_J6uly-Myc5jffPP4CPmGcIJQs9PNYNIJVhRRSkT-gcwQFJYVV_CRzABoXUpO-SH5nNIaAJSQ8IkcUomslqKaketbE5cud8OyuPxzjsVDl1dF6o33RR-8s6N3qbBhHLKLxuZUbGJYRpdSF4YitIXJKxdDsn4bu_SFHLTGJ_f1Oc_J34vz28Xv8urm1-Xi7Kq0nLNcKgNGGu54A4Jj29hGNkq1d1RQJhomreLCMGioUqoyylkAUwlnOaKlqpFsTn7udDdj07s764Ycjdeb2PUmPupgOv22MnQrvQz3WjAmOcAkcPwsEMO_0aWs-y5Z570ZXBiTRlkxitN4MaFH79B1GOMwnTdRNRVVXbMtdbqj7PSIFF27XwZBb73SW6_0i1dTx4_XN-z5_-ZMwPcdsE45xJd6xWvFGLAns6Ga6g</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Tufanli, Ozlem</creator><creator>Akillilar, Pelin Telkoparan</creator><creator>Acosta-Alvear, Diego</creator><creator>Kocaturk, Begum</creator><creator>Onat, Umut Inci</creator><creator>Hamid, Syed Muhammad</creator><creator>Çimen, Ismail</creator><creator>Walter, Peter</creator><creator>Weber, Christian</creator><creator>Erbay, Ebru</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6849-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-1803</orcidid></search><sort><creationdate>20170221</creationdate><title>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</title><author>Tufanli, Ozlem ; Akillilar, Pelin Telkoparan ; Acosta-Alvear, Diego ; Kocaturk, Begum ; Onat, Umut Inci ; Hamid, Syed Muhammad ; Çimen, Ismail ; Walter, Peter ; Weber, Christian ; Erbay, Ebru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9a0a8a4e4b0541fbcb8b99fd25235b38c945a30b29996a9ec00a65ec411c29b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atherosclerosis</topic><topic>Biological Sciences</topic><topic>Cellular biology</topic><topic>Diabetes</topic><topic>Endoplasmic reticulum</topic><topic>Inflammation</topic><topic>Obesity</topic><topic>PNAS Plus</topic><topic>Stress response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tufanli, Ozlem</creatorcontrib><creatorcontrib>Akillilar, Pelin Telkoparan</creatorcontrib><creatorcontrib>Acosta-Alvear, Diego</creatorcontrib><creatorcontrib>Kocaturk, Begum</creatorcontrib><creatorcontrib>Onat, Umut Inci</creatorcontrib><creatorcontrib>Hamid, Syed Muhammad</creatorcontrib><creatorcontrib>Çimen, Ismail</creatorcontrib><creatorcontrib>Walter, Peter</creatorcontrib><creatorcontrib>Weber, Christian</creatorcontrib><creatorcontrib>Erbay, Ebru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tufanli, Ozlem</au><au>Akillilar, Pelin Telkoparan</au><au>Acosta-Alvear, Diego</au><au>Kocaturk, Begum</au><au>Onat, Umut Inci</au><au>Hamid, Syed Muhammad</au><au>Çimen, Ismail</au><au>Walter, Peter</au><au>Weber, Christian</au><au>Erbay, Ebru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting IRE1 with small molecules counteracts progression of atherosclerosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>114</volume><issue>8</issue><spage>E1395</spage><epage>E1404</epage><pages>E1395-E1404</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28137856</pmid><doi>10.1073/pnas.1621188114</doi><orcidid>https://orcid.org/0000-0002-6849-708X</orcidid><orcidid>https://orcid.org/0000-0001-9584-1803</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.E1395-E1404 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338400 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Atherosclerosis Biological Sciences Cellular biology Diabetes Endoplasmic reticulum Inflammation Obesity PNAS Plus Stress response |
title | Targeting IRE1 with small molecules counteracts progression of atherosclerosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20IRE1%20with%20small%20molecules%20counteracts%20progression%20of%20atherosclerosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tufanli,%20Ozlem&rft.date=2017-02-21&rft.volume=114&rft.issue=8&rft.spage=E1395&rft.epage=E1404&rft.pages=E1395-E1404&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1621188114&rft_dat=%3Cjstor_pubme%3E26479330%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872567735&rft_id=info:pmid/28137856&rft_jstor_id=26479330&rfr_iscdi=true |