Probing equilibrium of molecular and deprotonated water on TiO₂(110)

Understanding adsorbed water and its dissociation to surface hydroxyls on oxide surfaces is key to unraveling many physical and chemical processes, yet the barrier for its deprotonation has never been measured. In this study, we present direct evidence for water dissociation equilibrium on rutile-Ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-02, Vol.114 (8), p.1801-1805
Hauptverfasser: Wang, Zhi-Tao, Wang, Yang-Gang, Mu, Rentao, Yoon, Yeohoon, Dahal, Arjun, Schenter, Gregory K., Glezakou, Vassiliki-Alexandra, Rousseau, Roger, Lyubinetsky, Igor, Dohnálek, Zdenek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1805
container_issue 8
container_start_page 1801
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Wang, Zhi-Tao
Wang, Yang-Gang
Mu, Rentao
Yoon, Yeohoon
Dahal, Arjun
Schenter, Gregory K.
Glezakou, Vassiliki-Alexandra
Rousseau, Roger
Lyubinetsky, Igor
Dohnálek, Zdenek
description Understanding adsorbed water and its dissociation to surface hydroxyls on oxide surfaces is key to unraveling many physical and chemical processes, yet the barrier for its deprotonation has never been measured. In this study, we present direct evidence for water dissociation equilibrium on rutile-TiO₂(110) by combining supersonic molecular beam, scanning tunneling microscopy (STM), and ab initio molecular dynamics. We measure the deprotonation/protonation barriers of 0.36 eV and find that molecularly bound water is preferred over the surface-bound hydroxyls by only 0.035 eV. We demonstrate that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O–H bonds and inducing deprotonation. The developed methodology for studying metastable reaction intermediates prepared with a high-energy molecular beam in the STM can be readily extended to other systems to clarify a wide range of important bond activation processes.
doi_str_mv 10.1073/pnas.1613756114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479270</jstor_id><sourcerecordid>26479270</sourcerecordid><originalsourceid>FETCH-LOGICAL-j331t-5bd8c788e5ef1a74bd29646ea987b2275acc1ff691d7f886dcc4813589447aae3</originalsourceid><addsrcrecordid>eNpVjc1Kw0AYRQdRbK2uXQmzrIvofPM_G0GKVaFQF3UdJsmkTkky6SRR3PZRfRILLYKbexf3cC5C10DugCh23za2uwMJTAkJwE_QGIiBRHJDTtGYEKoSzSkfoYuu2xBCjNDkHI2oBqmUEmM0f4sh880au-3gK59FP9Q4lLgOlcuHykZsmwIXro2hD43tXYG_9hlxaPDKL392uykAub1EZ6WtOnd17Al6nz-tZi_JYvn8OntcJBvGoE9EVuhcae2EK8EqnhXUSC6dNVpllCph8xzKUhooVKm1LPKca2BCG86VtY5N0MPB2w5Z7YrcNX20VdpGX9v4nQbr0_9L4z_SdfhMBWOaab4XTI-CGLaD6_q09l3uqso2LgxdCloKTSk3eo_eHNBN14f490ElV4Yqwn4BWGFy1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865822498</pqid></control><display><type>article</type><title>Probing equilibrium of molecular and deprotonated water on TiO₂(110)</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Zhi-Tao ; Wang, Yang-Gang ; Mu, Rentao ; Yoon, Yeohoon ; Dahal, Arjun ; Schenter, Gregory K. ; Glezakou, Vassiliki-Alexandra ; Rousseau, Roger ; Lyubinetsky, Igor ; Dohnálek, Zdenek</creator><creatorcontrib>Wang, Zhi-Tao ; Wang, Yang-Gang ; Mu, Rentao ; Yoon, Yeohoon ; Dahal, Arjun ; Schenter, Gregory K. ; Glezakou, Vassiliki-Alexandra ; Rousseau, Roger ; Lyubinetsky, Igor ; Dohnálek, Zdenek</creatorcontrib><description>Understanding adsorbed water and its dissociation to surface hydroxyls on oxide surfaces is key to unraveling many physical and chemical processes, yet the barrier for its deprotonation has never been measured. In this study, we present direct evidence for water dissociation equilibrium on rutile-TiO₂(110) by combining supersonic molecular beam, scanning tunneling microscopy (STM), and ab initio molecular dynamics. We measure the deprotonation/protonation barriers of 0.36 eV and find that molecularly bound water is preferred over the surface-bound hydroxyls by only 0.035 eV. We demonstrate that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O–H bonds and inducing deprotonation. The developed methodology for studying metastable reaction intermediates prepared with a high-energy molecular beam in the STM can be readily extended to other systems to clarify a wide range of important bond activation processes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1613756114</identifier><identifier>PMID: 28167775</identifier><language>eng</language><publisher>National Academy of Sciences</publisher><subject>Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.1801-1805</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479270$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479270$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids></links><search><creatorcontrib>Wang, Zhi-Tao</creatorcontrib><creatorcontrib>Wang, Yang-Gang</creatorcontrib><creatorcontrib>Mu, Rentao</creatorcontrib><creatorcontrib>Yoon, Yeohoon</creatorcontrib><creatorcontrib>Dahal, Arjun</creatorcontrib><creatorcontrib>Schenter, Gregory K.</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Lyubinetsky, Igor</creatorcontrib><creatorcontrib>Dohnálek, Zdenek</creatorcontrib><title>Probing equilibrium of molecular and deprotonated water on TiO₂(110)</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Understanding adsorbed water and its dissociation to surface hydroxyls on oxide surfaces is key to unraveling many physical and chemical processes, yet the barrier for its deprotonation has never been measured. In this study, we present direct evidence for water dissociation equilibrium on rutile-TiO₂(110) by combining supersonic molecular beam, scanning tunneling microscopy (STM), and ab initio molecular dynamics. We measure the deprotonation/protonation barriers of 0.36 eV and find that molecularly bound water is preferred over the surface-bound hydroxyls by only 0.035 eV. We demonstrate that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O–H bonds and inducing deprotonation. The developed methodology for studying metastable reaction intermediates prepared with a high-energy molecular beam in the STM can be readily extended to other systems to clarify a wide range of important bond activation processes.</description><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVjc1Kw0AYRQdRbK2uXQmzrIvofPM_G0GKVaFQF3UdJsmkTkky6SRR3PZRfRILLYKbexf3cC5C10DugCh23za2uwMJTAkJwE_QGIiBRHJDTtGYEKoSzSkfoYuu2xBCjNDkHI2oBqmUEmM0f4sh880au-3gK59FP9Q4lLgOlcuHykZsmwIXro2hD43tXYG_9hlxaPDKL392uykAub1EZ6WtOnd17Al6nz-tZi_JYvn8OntcJBvGoE9EVuhcae2EK8EqnhXUSC6dNVpllCph8xzKUhooVKm1LPKca2BCG86VtY5N0MPB2w5Z7YrcNX20VdpGX9v4nQbr0_9L4z_SdfhMBWOaab4XTI-CGLaD6_q09l3uqso2LgxdCloKTSk3eo_eHNBN14f490ElV4Yqwn4BWGFy1g</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Wang, Zhi-Tao</creator><creator>Wang, Yang-Gang</creator><creator>Mu, Rentao</creator><creator>Yoon, Yeohoon</creator><creator>Dahal, Arjun</creator><creator>Schenter, Gregory K.</creator><creator>Glezakou, Vassiliki-Alexandra</creator><creator>Rousseau, Roger</creator><creator>Lyubinetsky, Igor</creator><creator>Dohnálek, Zdenek</creator><general>National Academy of Sciences</general><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170221</creationdate><title>Probing equilibrium of molecular and deprotonated water on TiO₂(110)</title><author>Wang, Zhi-Tao ; Wang, Yang-Gang ; Mu, Rentao ; Yoon, Yeohoon ; Dahal, Arjun ; Schenter, Gregory K. ; Glezakou, Vassiliki-Alexandra ; Rousseau, Roger ; Lyubinetsky, Igor ; Dohnálek, Zdenek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j331t-5bd8c788e5ef1a74bd29646ea987b2275acc1ff691d7f886dcc4813589447aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhi-Tao</creatorcontrib><creatorcontrib>Wang, Yang-Gang</creatorcontrib><creatorcontrib>Mu, Rentao</creatorcontrib><creatorcontrib>Yoon, Yeohoon</creatorcontrib><creatorcontrib>Dahal, Arjun</creatorcontrib><creatorcontrib>Schenter, Gregory K.</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Lyubinetsky, Igor</creatorcontrib><creatorcontrib>Dohnálek, Zdenek</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhi-Tao</au><au>Wang, Yang-Gang</au><au>Mu, Rentao</au><au>Yoon, Yeohoon</au><au>Dahal, Arjun</au><au>Schenter, Gregory K.</au><au>Glezakou, Vassiliki-Alexandra</au><au>Rousseau, Roger</au><au>Lyubinetsky, Igor</au><au>Dohnálek, Zdenek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing equilibrium of molecular and deprotonated water on TiO₂(110)</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2017-02-21</date><risdate>2017</risdate><volume>114</volume><issue>8</issue><spage>1801</spage><epage>1805</epage><pages>1801-1805</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding adsorbed water and its dissociation to surface hydroxyls on oxide surfaces is key to unraveling many physical and chemical processes, yet the barrier for its deprotonation has never been measured. In this study, we present direct evidence for water dissociation equilibrium on rutile-TiO₂(110) by combining supersonic molecular beam, scanning tunneling microscopy (STM), and ab initio molecular dynamics. We measure the deprotonation/protonation barriers of 0.36 eV and find that molecularly bound water is preferred over the surface-bound hydroxyls by only 0.035 eV. We demonstrate that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O–H bonds and inducing deprotonation. The developed methodology for studying metastable reaction intermediates prepared with a high-energy molecular beam in the STM can be readily extended to other systems to clarify a wide range of important bond activation processes.</abstract><pub>National Academy of Sciences</pub><pmid>28167775</pmid><doi>10.1073/pnas.1613756114</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (8), p.1801-1805
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338384
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Physical Sciences
title Probing equilibrium of molecular and deprotonated water on TiO₂(110)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20equilibrium%20of%20molecular%20and%20deprotonated%20water%20on%20TiO%E2%82%82(110)&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Zhi-Tao&rft.date=2017-02-21&rft.volume=114&rft.issue=8&rft.spage=1801&rft.epage=1805&rft.pages=1801-1805&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1613756114&rft_dat=%3Cjstor_pubme%3E26479270%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865822498&rft_id=info:pmid/28167775&rft_jstor_id=26479270&rfr_iscdi=true