Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System

Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2017-02, Vol.17 (2)
Hauptverfasser: Ahn, DaeHan, Park, Homin, Hwang, Seokhyun, Park, Taejoon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Sensors (Basel, Switzerland)
container_volume 17
creator Ahn, DaeHan
Park, Homin
Hwang, Seokhyun
Park, Taejoon
description Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrance by leveraging built-in smartphone sensors only. The results of our comprehensive evaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1%∼94.0% accuracy, outperforming other methods by 26.9%∼38.4% and maintains at least 87.8% accuracy regardless of smartphone positions and vehicle types.
doi_str_mv 10.3390/s17020333
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335990</sourcerecordid><originalsourceid>FETCH-LOGICAL-p210t-58162ceb5dac94d0aff3cac65291a49af6c06d3df1115dfae5db8b3676ce1af73</originalsourceid><addsrcrecordid>eNpVjstKw0AYhQdBbK0ufIN5gehcMklmI7TF1kBBsOo2_Jn5px3JjUwqpE9vRDeuDpzv43AIuePsXkrNHgJPmWBSygsy57GIo0wINiPXIXwyJqY-uyIzkQmWpVrNyf4VKw9lhTS32AzeeQODbxvaOvqBR28qjFYt9NY3B7o0PyjQFQS0dJI2p_N5pHnjsMfGIN2PYcD6hlw6qALe_uWCvG-e3tbP0e5lm6-Xu6gTnA2RyngiDJbKgtGxZeCcNGASJTSHWINLDEustI5zrqwDVLbMSpmkiUEOLpUL8vi7253KGq2Z_vdQFV3va-jHogVf_CeNPxaH9qtQUiqtmfwGoqldNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahn, DaeHan ; Park, Homin ; Hwang, Seokhyun ; Park, Taejoon</creator><creatorcontrib>Ahn, DaeHan ; Park, Homin ; Hwang, Seokhyun ; Park, Taejoon</creatorcontrib><description>Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrance by leveraging built-in smartphone sensors only. The results of our comprehensive evaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1%∼94.0% accuracy, outperforming other methods by 26.9%∼38.4% and maintains at least 87.8% accuracy regardless of smartphone positions and vehicle types.</description><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s17020333</identifier><identifier>PMID: 28208795</identifier><language>eng</language><publisher>MDPI</publisher><ispartof>Sensors (Basel, Switzerland), 2017-02, Vol.17 (2)</ispartof><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335990/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335990/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Ahn, DaeHan</creatorcontrib><creatorcontrib>Park, Homin</creatorcontrib><creatorcontrib>Hwang, Seokhyun</creatorcontrib><creatorcontrib>Park, Taejoon</creatorcontrib><title>Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System</title><title>Sensors (Basel, Switzerland)</title><description>Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrance by leveraging built-in smartphone sensors only. The results of our comprehensive evaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1%∼94.0% accuracy, outperforming other methods by 26.9%∼38.4% and maintains at least 87.8% accuracy regardless of smartphone positions and vehicle types.</description><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVjstKw0AYhQdBbK0ufIN5gehcMklmI7TF1kBBsOo2_Jn5px3JjUwqpE9vRDeuDpzv43AIuePsXkrNHgJPmWBSygsy57GIo0wINiPXIXwyJqY-uyIzkQmWpVrNyf4VKw9lhTS32AzeeQODbxvaOvqBR28qjFYt9NY3B7o0PyjQFQS0dJI2p_N5pHnjsMfGIN2PYcD6hlw6qALe_uWCvG-e3tbP0e5lm6-Xu6gTnA2RyngiDJbKgtGxZeCcNGASJTSHWINLDEustI5zrqwDVLbMSpmkiUEOLpUL8vi7253KGq2Z_vdQFV3va-jHogVf_CeNPxaH9qtQUiqtmfwGoqldNQ</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Ahn, DaeHan</creator><creator>Park, Homin</creator><creator>Hwang, Seokhyun</creator><creator>Park, Taejoon</creator><general>MDPI</general><scope>5PM</scope></search><sort><creationdate>20170209</creationdate><title>Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System</title><author>Ahn, DaeHan ; Park, Homin ; Hwang, Seokhyun ; Park, Taejoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p210t-58162ceb5dac94d0aff3cac65291a49af6c06d3df1115dfae5db8b3676ce1af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, DaeHan</creatorcontrib><creatorcontrib>Park, Homin</creatorcontrib><creatorcontrib>Hwang, Seokhyun</creatorcontrib><creatorcontrib>Park, Taejoon</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, DaeHan</au><au>Park, Homin</au><au>Hwang, Seokhyun</au><au>Park, Taejoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2017-02-09</date><risdate>2017</risdate><volume>17</volume><issue>2</issue><eissn>1424-8220</eissn><abstract>Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrance by leveraging built-in smartphone sensors only. The results of our comprehensive evaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1%∼94.0% accuracy, outperforming other methods by 26.9%∼38.4% and maintains at least 87.8% accuracy regardless of smartphone positions and vehicle types.</abstract><pub>MDPI</pub><pmid>28208795</pmid><doi>10.3390/s17020333</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2017-02, Vol.17 (2)
issn 1424-8220
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335990
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
title Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20Identification%20of%20Vehicle-Boarding%20Actions%20Based%20on%20Fuzzy%20Inference%20System&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ahn,%20DaeHan&rft.date=2017-02-09&rft.volume=17&rft.issue=2&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s17020333&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5335990%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28208795&rfr_iscdi=true