On semidiscrete constant mean curvature surfaces and their associated families

The present paper studies semidiscrete surfaces in three-dimensional Euclidean space within the framework of integrable systems. In particular, we investigate semidiscrete surfaces with constant mean curvature along with their associated families. The notion of mean curvature introduced in this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2017, Vol.182 (3), p.537-563
1. Verfasser: Carl, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue 3
container_start_page 537
container_title Monatshefte für Mathematik
container_volume 182
creator Carl, Wolfgang
description The present paper studies semidiscrete surfaces in three-dimensional Euclidean space within the framework of integrable systems. In particular, we investigate semidiscrete surfaces with constant mean curvature along with their associated families. The notion of mean curvature introduced in this paper is motivated by a recently developed curvature theory for quadrilateral meshes equipped with unit normal vectors at the vertices, and extends previous work on semidiscrete surfaces. In the situation of vanishing mean curvature, the associated families are defined via a Weierstrass representation. For the general cmc case, we introduce a Lax pair representation that directly defines associated families of cmc surfaces, and is connected to a semidiscrete sinh -Gordon equation. Utilizing this theory we investigate semidiscrete Delaunay surfaces and their connection to elliptic billiards.
doi_str_mv 10.1007/s00605-016-0929-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879196566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-93e6662b23c9cb40b370ea4b61c21613d563788da3bea337d6c7e2ff08dcf13b3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoNY7LX6A9xIwI2bsSc5M8lkI0jxC0q7qeuQyZxpU2YyNckU_PfmcmupgqsszpMnec_L2BsBHwSAPs0ACroGhGrASNOoZ2wnWlRNB714znYAUjVGdt0xe5nzLQAIVOYFO5Y9CoWt3rGLy8gzLWEM2ScqxP0ac3Gx8IVc5H5L965siXje0uQ8Ze7iyMsNhcRdzqsPrtDIJ7eEOVB-xY4mN2d6_XCesB9fPl-dfWvOL79-P_t03vhWQ2kMklJKDhK98UMLA2og1w5KeCmUwLFTqPt-dDiQQ9Sj8prkNEE_-knggCfs48F7tw0LjZ5iSW62dyksLv2yqwv270kMN_Z6vbcdYs2NVfD-QZDWnxvlYpe6AZpnF2ndshW9NsKoTqmKvvsHvV23FGu8SvWgtRYGKiUOlE9rzommx88IsPu27KEtW9uy-7bs3vz2aYrHG3_qqYA8ALmO4jWlJ0__1_obUnWg9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880777190</pqid></control><display><type>article</type><title>On semidiscrete constant mean curvature surfaces and their associated families</title><source>SpringerLink Journals - AutoHoldings</source><creator>Carl, Wolfgang</creator><creatorcontrib>Carl, Wolfgang</creatorcontrib><description>The present paper studies semidiscrete surfaces in three-dimensional Euclidean space within the framework of integrable systems. In particular, we investigate semidiscrete surfaces with constant mean curvature along with their associated families. The notion of mean curvature introduced in this paper is motivated by a recently developed curvature theory for quadrilateral meshes equipped with unit normal vectors at the vertices, and extends previous work on semidiscrete surfaces. In the situation of vanishing mean curvature, the associated families are defined via a Weierstrass representation. For the general cmc case, we introduce a Lax pair representation that directly defines associated families of cmc surfaces, and is connected to a semidiscrete sinh -Gordon equation. Utilizing this theory we investigate semidiscrete Delaunay surfaces and their connection to elliptic billiards.</description><identifier>ISSN: 0026-9255</identifier><identifier>EISSN: 1436-5081</identifier><identifier>DOI: 10.1007/s00605-016-0929-6</identifier><identifier>PMID: 28316347</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Curvature ; Euclidean geometry ; Euclidean space ; Mathematics ; Mathematics and Statistics</subject><ispartof>Monatshefte für Mathematik, 2017, Vol.182 (3), p.537-563</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-93e6662b23c9cb40b370ea4b61c21613d563788da3bea337d6c7e2ff08dcf13b3</citedby><cites>FETCH-LOGICAL-c470t-93e6662b23c9cb40b370ea4b61c21613d563788da3bea337d6c7e2ff08dcf13b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00605-016-0929-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00605-016-0929-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28316347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carl, Wolfgang</creatorcontrib><title>On semidiscrete constant mean curvature surfaces and their associated families</title><title>Monatshefte für Mathematik</title><addtitle>Monatsh Math</addtitle><addtitle>Mon Hefte Math</addtitle><description>The present paper studies semidiscrete surfaces in three-dimensional Euclidean space within the framework of integrable systems. In particular, we investigate semidiscrete surfaces with constant mean curvature along with their associated families. The notion of mean curvature introduced in this paper is motivated by a recently developed curvature theory for quadrilateral meshes equipped with unit normal vectors at the vertices, and extends previous work on semidiscrete surfaces. In the situation of vanishing mean curvature, the associated families are defined via a Weierstrass representation. For the general cmc case, we introduce a Lax pair representation that directly defines associated families of cmc surfaces, and is connected to a semidiscrete sinh -Gordon equation. Utilizing this theory we investigate semidiscrete Delaunay surfaces and their connection to elliptic billiards.</description><subject>Curvature</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0026-9255</issn><issn>1436-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kU1rFTEUhoNY7LX6A9xIwI2bsSc5M8lkI0jxC0q7qeuQyZxpU2YyNckU_PfmcmupgqsszpMnec_L2BsBHwSAPs0ACroGhGrASNOoZ2wnWlRNB714znYAUjVGdt0xe5nzLQAIVOYFO5Y9CoWt3rGLy8gzLWEM2ScqxP0ac3Gx8IVc5H5L965siXje0uQ8Ze7iyMsNhcRdzqsPrtDIJ7eEOVB-xY4mN2d6_XCesB9fPl-dfWvOL79-P_t03vhWQ2kMklJKDhK98UMLA2og1w5KeCmUwLFTqPt-dDiQQ9Sj8prkNEE_-knggCfs48F7tw0LjZ5iSW62dyksLv2yqwv270kMN_Z6vbcdYs2NVfD-QZDWnxvlYpe6AZpnF2ndshW9NsKoTqmKvvsHvV23FGu8SvWgtRYGKiUOlE9rzommx88IsPu27KEtW9uy-7bs3vz2aYrHG3_qqYA8ALmO4jWlJ0__1_obUnWg9Q</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Carl, Wolfgang</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>On semidiscrete constant mean curvature surfaces and their associated families</title><author>Carl, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-93e6662b23c9cb40b370ea4b61c21613d563788da3bea337d6c7e2ff08dcf13b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Curvature</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carl, Wolfgang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Monatshefte für Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carl, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On semidiscrete constant mean curvature surfaces and their associated families</atitle><jtitle>Monatshefte für Mathematik</jtitle><stitle>Monatsh Math</stitle><addtitle>Mon Hefte Math</addtitle><date>2017</date><risdate>2017</risdate><volume>182</volume><issue>3</issue><spage>537</spage><epage>563</epage><pages>537-563</pages><issn>0026-9255</issn><eissn>1436-5081</eissn><abstract>The present paper studies semidiscrete surfaces in three-dimensional Euclidean space within the framework of integrable systems. In particular, we investigate semidiscrete surfaces with constant mean curvature along with their associated families. The notion of mean curvature introduced in this paper is motivated by a recently developed curvature theory for quadrilateral meshes equipped with unit normal vectors at the vertices, and extends previous work on semidiscrete surfaces. In the situation of vanishing mean curvature, the associated families are defined via a Weierstrass representation. For the general cmc case, we introduce a Lax pair representation that directly defines associated families of cmc surfaces, and is connected to a semidiscrete sinh -Gordon equation. Utilizing this theory we investigate semidiscrete Delaunay surfaces and their connection to elliptic billiards.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>28316347</pmid><doi>10.1007/s00605-016-0929-6</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-9255
ispartof Monatshefte für Mathematik, 2017, Vol.182 (3), p.537-563
issn 0026-9255
1436-5081
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333473
source SpringerLink Journals - AutoHoldings
subjects Curvature
Euclidean geometry
Euclidean space
Mathematics
Mathematics and Statistics
title On semidiscrete constant mean curvature surfaces and their associated families
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20semidiscrete%20constant%20mean%20curvature%20surfaces%20and%20their%20associated%20families&rft.jtitle=Monatshefte%20f%C3%BCr%20Mathematik&rft.au=Carl,%20Wolfgang&rft.date=2017&rft.volume=182&rft.issue=3&rft.spage=537&rft.epage=563&rft.pages=537-563&rft.issn=0026-9255&rft.eissn=1436-5081&rft_id=info:doi/10.1007/s00605-016-0929-6&rft_dat=%3Cproquest_pubme%3E1879196566%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880777190&rft_id=info:pmid/28316347&rfr_iscdi=true