Modeling the Temporal Evolution of Postoperative Complications

Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2016, Vol.2016, p.551-559
Hauptverfasser: Feld, Shara I, Cobian, Alexander G, Tevis, Sarah E, Kennedy, Gregory D, Craven, Mark W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue
container_start_page 551
container_title AMIA ... Annual Symposium proceedings
container_volume 2016
creator Feld, Shara I
Cobian, Alexander G
Tevis, Sarah E
Kennedy, Gregory D
Craven, Mark W
description Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion).
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1875400972</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-5f53776c53ec969223d003ffe057148a9093302d36436c25fdc24f239897fd423</originalsourceid><addsrcrecordid>eNpVkMtKAzEARYMgtlZ_QWbpZiDvx6YgpWqhoou6DjGTtJHMZJxkCv69LVbR1V1cOOdyz8AUMaZqCgWfgMuc3yGkgkl-ASZYYq4kQ1Mwf0qNi6HbVmXnqo1r-zSYWC33KY4lpK5KvnpJuaTeDaaEvasWqe1jsObY5itw7k3M7vqUM_B6v9wsHuv188NqcbeueyRRqZlnRAhuGXFWcYUxaSAk3jvIBKLSKKgIgbghnBJuMfONxdRjoqQSvqGYzMD8m9uPb61rrOvKYabuh9Ca4VMnE_T_pgs7vU17zQghGIkD4PYEGNLH6HLRbcjWxWg6l8askRSMQqjE0XXz1_Ur-TmNfAG_dGfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875400972</pqid></control><display><type>article</type><title>Modeling the Temporal Evolution of Postoperative Complications</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Feld, Shara I ; Cobian, Alexander G ; Tevis, Sarah E ; Kennedy, Gregory D ; Craven, Mark W</creator><creatorcontrib>Feld, Shara I ; Cobian, Alexander G ; Tevis, Sarah E ; Kennedy, Gregory D ; Craven, Mark W</creatorcontrib><description>Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion).</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 28269851</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Databases, Factual ; Disease Progression ; Humans ; Markov Chains ; Models, Biological ; Postoperative Complications ; Risk Factors ; ROC Curve</subject><ispartof>AMIA ... Annual Symposium proceedings, 2016, Vol.2016, p.551-559</ispartof><rights>2016 AMIA - All rights reserved. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333217/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333217/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28269851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feld, Shara I</creatorcontrib><creatorcontrib>Cobian, Alexander G</creatorcontrib><creatorcontrib>Tevis, Sarah E</creatorcontrib><creatorcontrib>Kennedy, Gregory D</creatorcontrib><creatorcontrib>Craven, Mark W</creatorcontrib><title>Modeling the Temporal Evolution of Postoperative Complications</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion).</description><subject>Databases, Factual</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Models, Biological</subject><subject>Postoperative Complications</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtKAzEARYMgtlZ_QWbpZiDvx6YgpWqhoou6DjGTtJHMZJxkCv69LVbR1V1cOOdyz8AUMaZqCgWfgMuc3yGkgkl-ASZYYq4kQ1Mwf0qNi6HbVmXnqo1r-zSYWC33KY4lpK5KvnpJuaTeDaaEvasWqe1jsObY5itw7k3M7vqUM_B6v9wsHuv188NqcbeueyRRqZlnRAhuGXFWcYUxaSAk3jvIBKLSKKgIgbghnBJuMfONxdRjoqQSvqGYzMD8m9uPb61rrOvKYabuh9Ca4VMnE_T_pgs7vU17zQghGIkD4PYEGNLH6HLRbcjWxWg6l8askRSMQqjE0XXz1_Ur-TmNfAG_dGfk</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Feld, Shara I</creator><creator>Cobian, Alexander G</creator><creator>Tevis, Sarah E</creator><creator>Kennedy, Gregory D</creator><creator>Craven, Mark W</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2016</creationdate><title>Modeling the Temporal Evolution of Postoperative Complications</title><author>Feld, Shara I ; Cobian, Alexander G ; Tevis, Sarah E ; Kennedy, Gregory D ; Craven, Mark W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-5f53776c53ec969223d003ffe057148a9093302d36436c25fdc24f239897fd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Databases, Factual</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Models, Biological</topic><topic>Postoperative Complications</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feld, Shara I</creatorcontrib><creatorcontrib>Cobian, Alexander G</creatorcontrib><creatorcontrib>Tevis, Sarah E</creatorcontrib><creatorcontrib>Kennedy, Gregory D</creatorcontrib><creatorcontrib>Craven, Mark W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feld, Shara I</au><au>Cobian, Alexander G</au><au>Tevis, Sarah E</au><au>Kennedy, Gregory D</au><au>Craven, Mark W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Temporal Evolution of Postoperative Complications</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2016</date><risdate>2016</risdate><volume>2016</volume><spage>551</spage><epage>559</epage><pages>551-559</pages><eissn>1559-4076</eissn><abstract>Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion).</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>28269851</pmid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2016, Vol.2016, p.551-559
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333217
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Databases, Factual
Disease Progression
Humans
Markov Chains
Models, Biological
Postoperative Complications
Risk Factors
ROC Curve
title Modeling the Temporal Evolution of Postoperative Complications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Temporal%20Evolution%20of%20Postoperative%20Complications&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Feld,%20Shara%20I&rft.date=2016&rft.volume=2016&rft.spage=551&rft.epage=559&rft.pages=551-559&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1875400972%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875400972&rft_id=info:pmid/28269851&rfr_iscdi=true