Modeling the Temporal Evolution of Postoperative Complications
Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach b...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2016, Vol.2016, p.551-559 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 559 |
---|---|
container_issue | |
container_start_page | 551 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2016 |
creator | Feld, Shara I Cobian, Alexander G Tevis, Sarah E Kennedy, Gregory D Craven, Mark W |
description | Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion). |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1875400972</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-5f53776c53ec969223d003ffe057148a9093302d36436c25fdc24f239897fd423</originalsourceid><addsrcrecordid>eNpVkMtKAzEARYMgtlZ_QWbpZiDvx6YgpWqhoou6DjGTtJHMZJxkCv69LVbR1V1cOOdyz8AUMaZqCgWfgMuc3yGkgkl-ASZYYq4kQ1Mwf0qNi6HbVmXnqo1r-zSYWC33KY4lpK5KvnpJuaTeDaaEvasWqe1jsObY5itw7k3M7vqUM_B6v9wsHuv188NqcbeueyRRqZlnRAhuGXFWcYUxaSAk3jvIBKLSKKgIgbghnBJuMfONxdRjoqQSvqGYzMD8m9uPb61rrOvKYabuh9Ca4VMnE_T_pgs7vU17zQghGIkD4PYEGNLH6HLRbcjWxWg6l8askRSMQqjE0XXz1_Ur-TmNfAG_dGfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875400972</pqid></control><display><type>article</type><title>Modeling the Temporal Evolution of Postoperative Complications</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Feld, Shara I ; Cobian, Alexander G ; Tevis, Sarah E ; Kennedy, Gregory D ; Craven, Mark W</creator><creatorcontrib>Feld, Shara I ; Cobian, Alexander G ; Tevis, Sarah E ; Kennedy, Gregory D ; Craven, Mark W</creatorcontrib><description>Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion).</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 28269851</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Databases, Factual ; Disease Progression ; Humans ; Markov Chains ; Models, Biological ; Postoperative Complications ; Risk Factors ; ROC Curve</subject><ispartof>AMIA ... Annual Symposium proceedings, 2016, Vol.2016, p.551-559</ispartof><rights>2016 AMIA - All rights reserved. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333217/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333217/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28269851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feld, Shara I</creatorcontrib><creatorcontrib>Cobian, Alexander G</creatorcontrib><creatorcontrib>Tevis, Sarah E</creatorcontrib><creatorcontrib>Kennedy, Gregory D</creatorcontrib><creatorcontrib>Craven, Mark W</creatorcontrib><title>Modeling the Temporal Evolution of Postoperative Complications</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion).</description><subject>Databases, Factual</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Models, Biological</subject><subject>Postoperative Complications</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtKAzEARYMgtlZ_QWbpZiDvx6YgpWqhoou6DjGTtJHMZJxkCv69LVbR1V1cOOdyz8AUMaZqCgWfgMuc3yGkgkl-ASZYYq4kQ1Mwf0qNi6HbVmXnqo1r-zSYWC33KY4lpK5KvnpJuaTeDaaEvasWqe1jsObY5itw7k3M7vqUM_B6v9wsHuv188NqcbeueyRRqZlnRAhuGXFWcYUxaSAk3jvIBKLSKKgIgbghnBJuMfONxdRjoqQSvqGYzMD8m9uPb61rrOvKYabuh9Ca4VMnE_T_pgs7vU17zQghGIkD4PYEGNLH6HLRbcjWxWg6l8askRSMQqjE0XXz1_Ur-TmNfAG_dGfk</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Feld, Shara I</creator><creator>Cobian, Alexander G</creator><creator>Tevis, Sarah E</creator><creator>Kennedy, Gregory D</creator><creator>Craven, Mark W</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2016</creationdate><title>Modeling the Temporal Evolution of Postoperative Complications</title><author>Feld, Shara I ; Cobian, Alexander G ; Tevis, Sarah E ; Kennedy, Gregory D ; Craven, Mark W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-5f53776c53ec969223d003ffe057148a9093302d36436c25fdc24f239897fd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Databases, Factual</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Models, Biological</topic><topic>Postoperative Complications</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feld, Shara I</creatorcontrib><creatorcontrib>Cobian, Alexander G</creatorcontrib><creatorcontrib>Tevis, Sarah E</creatorcontrib><creatorcontrib>Kennedy, Gregory D</creatorcontrib><creatorcontrib>Craven, Mark W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feld, Shara I</au><au>Cobian, Alexander G</au><au>Tevis, Sarah E</au><au>Kennedy, Gregory D</au><au>Craven, Mark W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Temporal Evolution of Postoperative Complications</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2016</date><risdate>2016</risdate><volume>2016</volume><spage>551</spage><epage>559</epage><pages>551-559</pages><eissn>1559-4076</eissn><abstract>Post-operative complications have a significant impact on patient morbidity and mortality; these impacts are exacerbated when patients experience multiple complications. However, the task of modeling the temporal sequencing of complications has not been previously addressed. We present an approach based on Markov chain models for characterizing the temporal evolution of post-operative complications represented in the American College of Surgeons National Surgery Quality Improvement Program database. Our work demonstrates that the models have significant predictive value. In particular, an inhomogenous Markov chain model effectively predicts the development of serious complications (coma longer than a day, cardiac arrest, myocardial infarction, septic shock, renal failure, pneumonia) and interventional complications (unplanned re-intubation, longer than 2 days on a ventilator and bleeding transfusion).</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>28269851</pmid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2016, Vol.2016, p.551-559 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5333217 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Databases, Factual Disease Progression Humans Markov Chains Models, Biological Postoperative Complications Risk Factors ROC Curve |
title | Modeling the Temporal Evolution of Postoperative Complications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Temporal%20Evolution%20of%20Postoperative%20Complications&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Feld,%20Shara%20I&rft.date=2016&rft.volume=2016&rft.spage=551&rft.epage=559&rft.pages=551-559&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1875400972%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875400972&rft_id=info:pmid/28269851&rfr_iscdi=true |