Cortical multisensory connectivity is present near birth in humans
How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processin...
Gespeichert in:
Veröffentlicht in: | Brain imaging and behavior 2017-08, Vol.11 (4), p.1207-1213 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1213 |
---|---|
container_issue | 4 |
container_start_page | 1207 |
container_title | Brain imaging and behavior |
container_volume | 11 |
creator | Sours, Chandler Raghavan, Prashant Foxworthy, W. Alex Meredith, M. Alex El Metwally, Dina Zhuo, Jiachen Gilmore, John H. Medina, Alexandre E. Gullapalli, Rao P. |
description | How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life. |
doi_str_mv | 10.1007/s11682-016-9586-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5332431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1841137852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVIiF_5gGxCQzbZtKOSWq-NIRniBxi8sddCrZY8Mt3SROo2zN9HZuzBDnhVBffUrSouQl8BnwLG4mcB4JK0GHirmOQt_4AOQVFoBePs475n4gAdlfKAMeukgs_ogAgmQQA7RL9XKc_BmrGZlnEOxcWS8raxKUZn5_AY5m0TSrPJrkpzE53JTR_yvG5CbNbLZGI5QZ-8GYv78lyP0d35n9vVZXt9c3G1-nXdWkb53PaSWQbemkEIwwx1RAEYggczOD6As9LTYWDY9V4RoNBT4p33jIrOd04aeozOdr6bpZ_cYOs92Yx6k8Nk8lYnE_RbJYa1vk-PmlFKOgrV4MezQU5_F1dmPYVi3Tia6NJSNMgOgArJSEW__4c-pCXH-p4GRaRSihNRKdhRNqdSsvP7YwDrp4T0LiFdE9JPCWleZ769_mI_8RJJBcgOKFWK9y6_Wv2u6z-jPp36</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928999627</pqid></control><display><type>article</type><title>Cortical multisensory connectivity is present near birth in humans</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Sours, Chandler ; Raghavan, Prashant ; Foxworthy, W. Alex ; Meredith, M. Alex ; El Metwally, Dina ; Zhuo, Jiachen ; Gilmore, John H. ; Medina, Alexandre E. ; Gullapalli, Rao P.</creator><creatorcontrib>Sours, Chandler ; Raghavan, Prashant ; Foxworthy, W. Alex ; Meredith, M. Alex ; El Metwally, Dina ; Zhuo, Jiachen ; Gilmore, John H. ; Medina, Alexandre E. ; Gullapalli, Rao P.</creatorcontrib><description>How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.</description><identifier>ISSN: 1931-7557</identifier><identifier>EISSN: 1931-7565</identifier><identifier>DOI: 10.1007/s11682-016-9586-6</identifier><identifier>PMID: 27581715</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adults ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - diagnostic imaging ; Brain - growth & development ; Brain - physiology ; Brain Mapping ; Brief Communication ; Cohort Studies ; Convergence ; Cortex (auditory) ; Cortex (somatosensory) ; Cortex (temporal) ; Female ; Functional magnetic resonance imaging ; Humans ; Infant ; Infant, Newborn ; Infants ; Information processing ; Intraparietal sulcus ; Magnetic Resonance Imaging ; Male ; Neonates ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - growth & development ; Neural Pathways - physiology ; Neuropsychology ; Neuroradiology ; Neurosciences ; Newborn babies ; Psychiatry ; Rest ; Sensory integration ; Sensory neurons ; Superior temporal sulcus ; Visual cortex</subject><ispartof>Brain imaging and behavior, 2017-08, Vol.11 (4), p.1207-1213</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Brain Imaging and Behavior is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</citedby><cites>FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11682-016-9586-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11682-016-9586-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27581715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sours, Chandler</creatorcontrib><creatorcontrib>Raghavan, Prashant</creatorcontrib><creatorcontrib>Foxworthy, W. Alex</creatorcontrib><creatorcontrib>Meredith, M. Alex</creatorcontrib><creatorcontrib>El Metwally, Dina</creatorcontrib><creatorcontrib>Zhuo, Jiachen</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Medina, Alexandre E.</creatorcontrib><creatorcontrib>Gullapalli, Rao P.</creatorcontrib><title>Cortical multisensory connectivity is present near birth in humans</title><title>Brain imaging and behavior</title><addtitle>Brain Imaging and Behavior</addtitle><addtitle>Brain Imaging Behav</addtitle><description>How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.</description><subject>Adults</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - growth & development</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Brief Communication</subject><subject>Cohort Studies</subject><subject>Convergence</subject><subject>Cortex (auditory)</subject><subject>Cortex (somatosensory)</subject><subject>Cortex (temporal)</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infants</subject><subject>Information processing</subject><subject>Intraparietal sulcus</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Neonates</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - growth & development</subject><subject>Neural Pathways - physiology</subject><subject>Neuropsychology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Newborn babies</subject><subject>Psychiatry</subject><subject>Rest</subject><subject>Sensory integration</subject><subject>Sensory neurons</subject><subject>Superior temporal sulcus</subject><subject>Visual cortex</subject><issn>1931-7557</issn><issn>1931-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kctqHDEQRUVIiF_5gGxCQzbZtKOSWq-NIRniBxi8sddCrZY8Mt3SROo2zN9HZuzBDnhVBffUrSouQl8BnwLG4mcB4JK0GHirmOQt_4AOQVFoBePs475n4gAdlfKAMeukgs_ogAgmQQA7RL9XKc_BmrGZlnEOxcWS8raxKUZn5_AY5m0TSrPJrkpzE53JTR_yvG5CbNbLZGI5QZ-8GYv78lyP0d35n9vVZXt9c3G1-nXdWkb53PaSWQbemkEIwwx1RAEYggczOD6As9LTYWDY9V4RoNBT4p33jIrOd04aeozOdr6bpZ_cYOs92Yx6k8Nk8lYnE_RbJYa1vk-PmlFKOgrV4MezQU5_F1dmPYVi3Tia6NJSNMgOgArJSEW__4c-pCXH-p4GRaRSihNRKdhRNqdSsvP7YwDrp4T0LiFdE9JPCWleZ769_mI_8RJJBcgOKFWK9y6_Wv2u6z-jPp36</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Sours, Chandler</creator><creator>Raghavan, Prashant</creator><creator>Foxworthy, W. Alex</creator><creator>Meredith, M. Alex</creator><creator>El Metwally, Dina</creator><creator>Zhuo, Jiachen</creator><creator>Gilmore, John H.</creator><creator>Medina, Alexandre E.</creator><creator>Gullapalli, Rao P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Cortical multisensory connectivity is present near birth in humans</title><author>Sours, Chandler ; Raghavan, Prashant ; Foxworthy, W. Alex ; Meredith, M. Alex ; El Metwally, Dina ; Zhuo, Jiachen ; Gilmore, John H. ; Medina, Alexandre E. ; Gullapalli, Rao P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adults</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - growth & development</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Brief Communication</topic><topic>Cohort Studies</topic><topic>Convergence</topic><topic>Cortex (auditory)</topic><topic>Cortex (somatosensory)</topic><topic>Cortex (temporal)</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infants</topic><topic>Information processing</topic><topic>Intraparietal sulcus</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Neonates</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - growth & development</topic><topic>Neural Pathways - physiology</topic><topic>Neuropsychology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Newborn babies</topic><topic>Psychiatry</topic><topic>Rest</topic><topic>Sensory integration</topic><topic>Sensory neurons</topic><topic>Superior temporal sulcus</topic><topic>Visual cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sours, Chandler</creatorcontrib><creatorcontrib>Raghavan, Prashant</creatorcontrib><creatorcontrib>Foxworthy, W. Alex</creatorcontrib><creatorcontrib>Meredith, M. Alex</creatorcontrib><creatorcontrib>El Metwally, Dina</creatorcontrib><creatorcontrib>Zhuo, Jiachen</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Medina, Alexandre E.</creatorcontrib><creatorcontrib>Gullapalli, Rao P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain imaging and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sours, Chandler</au><au>Raghavan, Prashant</au><au>Foxworthy, W. Alex</au><au>Meredith, M. Alex</au><au>El Metwally, Dina</au><au>Zhuo, Jiachen</au><au>Gilmore, John H.</au><au>Medina, Alexandre E.</au><au>Gullapalli, Rao P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical multisensory connectivity is present near birth in humans</atitle><jtitle>Brain imaging and behavior</jtitle><stitle>Brain Imaging and Behavior</stitle><addtitle>Brain Imaging Behav</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>1207</spage><epage>1213</epage><pages>1207-1213</pages><issn>1931-7557</issn><eissn>1931-7565</eissn><abstract>How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27581715</pmid><doi>10.1007/s11682-016-9586-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7557 |
ispartof | Brain imaging and behavior, 2017-08, Vol.11 (4), p.1207-1213 |
issn | 1931-7557 1931-7565 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5332431 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adults Biomedical and Life Sciences Biomedicine Brain Brain - diagnostic imaging Brain - growth & development Brain - physiology Brain Mapping Brief Communication Cohort Studies Convergence Cortex (auditory) Cortex (somatosensory) Cortex (temporal) Female Functional magnetic resonance imaging Humans Infant Infant, Newborn Infants Information processing Intraparietal sulcus Magnetic Resonance Imaging Male Neonates Neural networks Neural Pathways - diagnostic imaging Neural Pathways - growth & development Neural Pathways - physiology Neuropsychology Neuroradiology Neurosciences Newborn babies Psychiatry Rest Sensory integration Sensory neurons Superior temporal sulcus Visual cortex |
title | Cortical multisensory connectivity is present near birth in humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20multisensory%20connectivity%20is%20present%20near%20birth%20in%20humans&rft.jtitle=Brain%20imaging%20and%20behavior&rft.au=Sours,%20Chandler&rft.date=2017-08-01&rft.volume=11&rft.issue=4&rft.spage=1207&rft.epage=1213&rft.pages=1207-1213&rft.issn=1931-7557&rft.eissn=1931-7565&rft_id=info:doi/10.1007/s11682-016-9586-6&rft_dat=%3Cproquest_pubme%3E1841137852%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928999627&rft_id=info:pmid/27581715&rfr_iscdi=true |