Cortical multisensory connectivity is present near birth in humans

How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain imaging and behavior 2017-08, Vol.11 (4), p.1207-1213
Hauptverfasser: Sours, Chandler, Raghavan, Prashant, Foxworthy, W. Alex, Meredith, M. Alex, El Metwally, Dina, Zhuo, Jiachen, Gilmore, John H., Medina, Alexandre E., Gullapalli, Rao P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1213
container_issue 4
container_start_page 1207
container_title Brain imaging and behavior
container_volume 11
creator Sours, Chandler
Raghavan, Prashant
Foxworthy, W. Alex
Meredith, M. Alex
El Metwally, Dina
Zhuo, Jiachen
Gilmore, John H.
Medina, Alexandre E.
Gullapalli, Rao P.
description How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.
doi_str_mv 10.1007/s11682-016-9586-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5332431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1841137852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVIiF_5gGxCQzbZtKOSWq-NIRniBxi8sddCrZY8Mt3SROo2zN9HZuzBDnhVBffUrSouQl8BnwLG4mcB4JK0GHirmOQt_4AOQVFoBePs475n4gAdlfKAMeukgs_ogAgmQQA7RL9XKc_BmrGZlnEOxcWS8raxKUZn5_AY5m0TSrPJrkpzE53JTR_yvG5CbNbLZGI5QZ-8GYv78lyP0d35n9vVZXt9c3G1-nXdWkb53PaSWQbemkEIwwx1RAEYggczOD6As9LTYWDY9V4RoNBT4p33jIrOd04aeozOdr6bpZ_cYOs92Yx6k8Nk8lYnE_RbJYa1vk-PmlFKOgrV4MezQU5_F1dmPYVi3Tia6NJSNMgOgArJSEW__4c-pCXH-p4GRaRSihNRKdhRNqdSsvP7YwDrp4T0LiFdE9JPCWleZ769_mI_8RJJBcgOKFWK9y6_Wv2u6z-jPp36</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928999627</pqid></control><display><type>article</type><title>Cortical multisensory connectivity is present near birth in humans</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Sours, Chandler ; Raghavan, Prashant ; Foxworthy, W. Alex ; Meredith, M. Alex ; El Metwally, Dina ; Zhuo, Jiachen ; Gilmore, John H. ; Medina, Alexandre E. ; Gullapalli, Rao P.</creator><creatorcontrib>Sours, Chandler ; Raghavan, Prashant ; Foxworthy, W. Alex ; Meredith, M. Alex ; El Metwally, Dina ; Zhuo, Jiachen ; Gilmore, John H. ; Medina, Alexandre E. ; Gullapalli, Rao P.</creatorcontrib><description>How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.</description><identifier>ISSN: 1931-7557</identifier><identifier>EISSN: 1931-7565</identifier><identifier>DOI: 10.1007/s11682-016-9586-6</identifier><identifier>PMID: 27581715</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adults ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - diagnostic imaging ; Brain - growth &amp; development ; Brain - physiology ; Brain Mapping ; Brief Communication ; Cohort Studies ; Convergence ; Cortex (auditory) ; Cortex (somatosensory) ; Cortex (temporal) ; Female ; Functional magnetic resonance imaging ; Humans ; Infant ; Infant, Newborn ; Infants ; Information processing ; Intraparietal sulcus ; Magnetic Resonance Imaging ; Male ; Neonates ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - growth &amp; development ; Neural Pathways - physiology ; Neuropsychology ; Neuroradiology ; Neurosciences ; Newborn babies ; Psychiatry ; Rest ; Sensory integration ; Sensory neurons ; Superior temporal sulcus ; Visual cortex</subject><ispartof>Brain imaging and behavior, 2017-08, Vol.11 (4), p.1207-1213</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Brain Imaging and Behavior is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</citedby><cites>FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11682-016-9586-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11682-016-9586-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27581715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sours, Chandler</creatorcontrib><creatorcontrib>Raghavan, Prashant</creatorcontrib><creatorcontrib>Foxworthy, W. Alex</creatorcontrib><creatorcontrib>Meredith, M. Alex</creatorcontrib><creatorcontrib>El Metwally, Dina</creatorcontrib><creatorcontrib>Zhuo, Jiachen</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Medina, Alexandre E.</creatorcontrib><creatorcontrib>Gullapalli, Rao P.</creatorcontrib><title>Cortical multisensory connectivity is present near birth in humans</title><title>Brain imaging and behavior</title><addtitle>Brain Imaging and Behavior</addtitle><addtitle>Brain Imaging Behav</addtitle><description>How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.</description><subject>Adults</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - growth &amp; development</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Brief Communication</subject><subject>Cohort Studies</subject><subject>Convergence</subject><subject>Cortex (auditory)</subject><subject>Cortex (somatosensory)</subject><subject>Cortex (temporal)</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infants</subject><subject>Information processing</subject><subject>Intraparietal sulcus</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Neonates</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - growth &amp; development</subject><subject>Neural Pathways - physiology</subject><subject>Neuropsychology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Newborn babies</subject><subject>Psychiatry</subject><subject>Rest</subject><subject>Sensory integration</subject><subject>Sensory neurons</subject><subject>Superior temporal sulcus</subject><subject>Visual cortex</subject><issn>1931-7557</issn><issn>1931-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kctqHDEQRUVIiF_5gGxCQzbZtKOSWq-NIRniBxi8sddCrZY8Mt3SROo2zN9HZuzBDnhVBffUrSouQl8BnwLG4mcB4JK0GHirmOQt_4AOQVFoBePs475n4gAdlfKAMeukgs_ogAgmQQA7RL9XKc_BmrGZlnEOxcWS8raxKUZn5_AY5m0TSrPJrkpzE53JTR_yvG5CbNbLZGI5QZ-8GYv78lyP0d35n9vVZXt9c3G1-nXdWkb53PaSWQbemkEIwwx1RAEYggczOD6As9LTYWDY9V4RoNBT4p33jIrOd04aeozOdr6bpZ_cYOs92Yx6k8Nk8lYnE_RbJYa1vk-PmlFKOgrV4MezQU5_F1dmPYVi3Tia6NJSNMgOgArJSEW__4c-pCXH-p4GRaRSihNRKdhRNqdSsvP7YwDrp4T0LiFdE9JPCWleZ769_mI_8RJJBcgOKFWK9y6_Wv2u6z-jPp36</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Sours, Chandler</creator><creator>Raghavan, Prashant</creator><creator>Foxworthy, W. Alex</creator><creator>Meredith, M. Alex</creator><creator>El Metwally, Dina</creator><creator>Zhuo, Jiachen</creator><creator>Gilmore, John H.</creator><creator>Medina, Alexandre E.</creator><creator>Gullapalli, Rao P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Cortical multisensory connectivity is present near birth in humans</title><author>Sours, Chandler ; Raghavan, Prashant ; Foxworthy, W. Alex ; Meredith, M. Alex ; El Metwally, Dina ; Zhuo, Jiachen ; Gilmore, John H. ; Medina, Alexandre E. ; Gullapalli, Rao P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b85c51fcad77a5a3e2911a20dade6d1ec8f3dd50ebf92131b32feff5374f4e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adults</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - growth &amp; development</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Brief Communication</topic><topic>Cohort Studies</topic><topic>Convergence</topic><topic>Cortex (auditory)</topic><topic>Cortex (somatosensory)</topic><topic>Cortex (temporal)</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infants</topic><topic>Information processing</topic><topic>Intraparietal sulcus</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Neonates</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - growth &amp; development</topic><topic>Neural Pathways - physiology</topic><topic>Neuropsychology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Newborn babies</topic><topic>Psychiatry</topic><topic>Rest</topic><topic>Sensory integration</topic><topic>Sensory neurons</topic><topic>Superior temporal sulcus</topic><topic>Visual cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sours, Chandler</creatorcontrib><creatorcontrib>Raghavan, Prashant</creatorcontrib><creatorcontrib>Foxworthy, W. Alex</creatorcontrib><creatorcontrib>Meredith, M. Alex</creatorcontrib><creatorcontrib>El Metwally, Dina</creatorcontrib><creatorcontrib>Zhuo, Jiachen</creatorcontrib><creatorcontrib>Gilmore, John H.</creatorcontrib><creatorcontrib>Medina, Alexandre E.</creatorcontrib><creatorcontrib>Gullapalli, Rao P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain imaging and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sours, Chandler</au><au>Raghavan, Prashant</au><au>Foxworthy, W. Alex</au><au>Meredith, M. Alex</au><au>El Metwally, Dina</au><au>Zhuo, Jiachen</au><au>Gilmore, John H.</au><au>Medina, Alexandre E.</au><au>Gullapalli, Rao P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical multisensory connectivity is present near birth in humans</atitle><jtitle>Brain imaging and behavior</jtitle><stitle>Brain Imaging and Behavior</stitle><addtitle>Brain Imaging Behav</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>1207</spage><epage>1213</epage><pages>1207-1213</pages><issn>1931-7557</issn><eissn>1931-7565</eissn><abstract>How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27581715</pmid><doi>10.1007/s11682-016-9586-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7557
ispartof Brain imaging and behavior, 2017-08, Vol.11 (4), p.1207-1213
issn 1931-7557
1931-7565
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5332431
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adults
Biomedical and Life Sciences
Biomedicine
Brain
Brain - diagnostic imaging
Brain - growth & development
Brain - physiology
Brain Mapping
Brief Communication
Cohort Studies
Convergence
Cortex (auditory)
Cortex (somatosensory)
Cortex (temporal)
Female
Functional magnetic resonance imaging
Humans
Infant
Infant, Newborn
Infants
Information processing
Intraparietal sulcus
Magnetic Resonance Imaging
Male
Neonates
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - growth & development
Neural Pathways - physiology
Neuropsychology
Neuroradiology
Neurosciences
Newborn babies
Psychiatry
Rest
Sensory integration
Sensory neurons
Superior temporal sulcus
Visual cortex
title Cortical multisensory connectivity is present near birth in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20multisensory%20connectivity%20is%20present%20near%20birth%20in%20humans&rft.jtitle=Brain%20imaging%20and%20behavior&rft.au=Sours,%20Chandler&rft.date=2017-08-01&rft.volume=11&rft.issue=4&rft.spage=1207&rft.epage=1213&rft.pages=1207-1213&rft.issn=1931-7557&rft.eissn=1931-7565&rft_id=info:doi/10.1007/s11682-016-9586-6&rft_dat=%3Cproquest_pubme%3E1841137852%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928999627&rft_id=info:pmid/27581715&rfr_iscdi=true