Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells
Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellu...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-02, Vol.7 (1), p.43583-43583, Article 43583 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43583 |
---|---|
container_issue | 1 |
container_start_page | 43583 |
container_title | Scientific reports |
container_volume | 7 |
creator | Dumitrache, Alexandru Klingeman, Dawn M. Natzke, Jace Rodriguez Jr, Miguel Giannone, Richard J. Hettich, Robert L. Davison, Brian H. Brown, Steven D. |
description | Clostridium (Ruminiclostridium) thermocellum
is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes. |
doi_str_mv | 10.1038/srep43583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5327387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901718199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</originalsourceid><addsrcrecordid>eNplkV1vFCEUhomxsc22F_4BM9EbNVnlaxa4aWI2fjRp4oV6TRjm0KWdgRGYRvvry7p1s1Zu4OR9eA-HF6HnBL8jmMn3OcHEWSvZE3RCMW-XlFH69OB8jM5yvsZ1tVRxop6hYyopx1SoE3TzbQLrzeDvoG-MLf7WFw-5MaFv4NeUIGcfQ9N75yBBsFVyMTXrIeaSfO_nsSkbSGO0MAy16Hx0fhj_3J8GE25KDN42WzWfoiNnhgxnD_sC_fj08fv6y_Ly6-eL9YfLpW0ZKcvWEtZbJ6lj1kpuMO4MVh1lkjjRsW4le0dabgzjUjDRQbdSdOUYN1II4yxboPOd7zR3I_QWQklm0FPyo0m_dTRe_6sEv9FX8Va3jApWPRfo5c6gDul1tr6A3dgYAtiiCVsRRniFXj90SfHnDLno0eftnCZAnLMmUtBWSKpoRV89Qq_jnEL9A00UJoJIolSl3uwom2Kuqbr9iwnW26j1PurKvjgccU_-DbYCb3dArlK4gnTQ8j-3ezietSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901718199</pqid></control><display><type>article</type><title>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Dumitrache, Alexandru ; Klingeman, Dawn M. ; Natzke, Jace ; Rodriguez Jr, Miguel ; Giannone, Richard J. ; Hettich, Robert L. ; Davison, Brian H. ; Brown, Steven D.</creator><creatorcontrib>Dumitrache, Alexandru ; Klingeman, Dawn M. ; Natzke, Jace ; Rodriguez Jr, Miguel ; Giannone, Richard J. ; Hettich, Robert L. ; Davison, Brian H. ; Brown, Steven D. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><description>Clostridium (Ruminiclostridium) thermocellum
is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep43583</identifier><identifier>PMID: 28240279</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 45 ; 60 APPLIED LIFE SCIENCES ; 631/1647/2017 ; 631/326/252/318 ; 82 ; Antioxidants ; BASIC BIOLOGICAL SCIENCES ; biofilm ; Biofilms ; Biomarkers ; Biomass ; Bioreactors ; Biosynthetic Pathways ; Carbohydrate Metabolism ; Carbohydrates ; Cell division ; Cellulose ; Chemotaxis ; Clostridium thermocellum ; Clostridium thermocellum - genetics ; Clostridium thermocellum - growth & development ; Clostridium thermocellum - metabolism ; DNA repair ; Energy Metabolism ; Ethanol ; Fermentation ; Flagella ; Gene expression ; gene expression analysis ; Gene Expression Regulation ; Gene Expression Regulation, Bacterial ; Glycolysis ; Homeostasis ; Humanities and Social Sciences ; Hydrolysates ; Lipid Metabolism ; Lipids ; metabolic engineering ; Methionine ; multidisciplinary ; Nucleotide excision repair ; Oxidative Stress ; Plankton - genetics ; Plankton - growth & development ; Plankton - metabolism ; Planktonic cells ; Plant biomass ; Population studies ; Proteins ; proteomics ; Pyruvic acid ; RNA-seq ; Science ; Stress, Physiological ; transcriptomics ; tRNA</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.43583-43583, Article 43583</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</citedby><cites>FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28240279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361314$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumitrache, Alexandru</creatorcontrib><creatorcontrib>Klingeman, Dawn M.</creatorcontrib><creatorcontrib>Natzke, Jace</creatorcontrib><creatorcontrib>Rodriguez Jr, Miguel</creatorcontrib><creatorcontrib>Giannone, Richard J.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Brown, Steven D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><title>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Clostridium (Ruminiclostridium) thermocellum
is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.</description><subject>101/58</subject><subject>45</subject><subject>60 APPLIED LIFE SCIENCES</subject><subject>631/1647/2017</subject><subject>631/326/252/318</subject><subject>82</subject><subject>Antioxidants</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biomarkers</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Biosynthetic Pathways</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Cell division</subject><subject>Cellulose</subject><subject>Chemotaxis</subject><subject>Clostridium thermocellum</subject><subject>Clostridium thermocellum - genetics</subject><subject>Clostridium thermocellum - growth & development</subject><subject>Clostridium thermocellum - metabolism</subject><subject>DNA repair</subject><subject>Energy Metabolism</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Flagella</subject><subject>Gene expression</subject><subject>gene expression analysis</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolysates</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>metabolic engineering</subject><subject>Methionine</subject><subject>multidisciplinary</subject><subject>Nucleotide excision repair</subject><subject>Oxidative Stress</subject><subject>Plankton - genetics</subject><subject>Plankton - growth & development</subject><subject>Plankton - metabolism</subject><subject>Planktonic cells</subject><subject>Plant biomass</subject><subject>Population studies</subject><subject>Proteins</subject><subject>proteomics</subject><subject>Pyruvic acid</subject><subject>RNA-seq</subject><subject>Science</subject><subject>Stress, Physiological</subject><subject>transcriptomics</subject><subject>tRNA</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1vFCEUhomxsc22F_4BM9EbNVnlaxa4aWI2fjRp4oV6TRjm0KWdgRGYRvvry7p1s1Zu4OR9eA-HF6HnBL8jmMn3OcHEWSvZE3RCMW-XlFH69OB8jM5yvsZ1tVRxop6hYyopx1SoE3TzbQLrzeDvoG-MLf7WFw-5MaFv4NeUIGcfQ9N75yBBsFVyMTXrIeaSfO_nsSkbSGO0MAy16Hx0fhj_3J8GE25KDN42WzWfoiNnhgxnD_sC_fj08fv6y_Ly6-eL9YfLpW0ZKcvWEtZbJ6lj1kpuMO4MVh1lkjjRsW4le0dabgzjUjDRQbdSdOUYN1II4yxboPOd7zR3I_QWQklm0FPyo0m_dTRe_6sEv9FX8Va3jApWPRfo5c6gDul1tr6A3dgYAtiiCVsRRniFXj90SfHnDLno0eftnCZAnLMmUtBWSKpoRV89Qq_jnEL9A00UJoJIolSl3uwom2Kuqbr9iwnW26j1PurKvjgccU_-DbYCb3dArlK4gnTQ8j-3ezietSc</recordid><startdate>20170227</startdate><enddate>20170227</enddate><creator>Dumitrache, Alexandru</creator><creator>Klingeman, Dawn M.</creator><creator>Natzke, Jace</creator><creator>Rodriguez Jr, Miguel</creator><creator>Giannone, Richard J.</creator><creator>Hettich, Robert L.</creator><creator>Davison, Brian H.</creator><creator>Brown, Steven D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170227</creationdate><title>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</title><author>Dumitrache, Alexandru ; Klingeman, Dawn M. ; Natzke, Jace ; Rodriguez Jr, Miguel ; Giannone, Richard J. ; Hettich, Robert L. ; Davison, Brian H. ; Brown, Steven D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>101/58</topic><topic>45</topic><topic>60 APPLIED LIFE SCIENCES</topic><topic>631/1647/2017</topic><topic>631/326/252/318</topic><topic>82</topic><topic>Antioxidants</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biomarkers</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Biosynthetic Pathways</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Cell division</topic><topic>Cellulose</topic><topic>Chemotaxis</topic><topic>Clostridium thermocellum</topic><topic>Clostridium thermocellum - genetics</topic><topic>Clostridium thermocellum - growth & development</topic><topic>Clostridium thermocellum - metabolism</topic><topic>DNA repair</topic><topic>Energy Metabolism</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Flagella</topic><topic>Gene expression</topic><topic>gene expression analysis</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolysates</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>metabolic engineering</topic><topic>Methionine</topic><topic>multidisciplinary</topic><topic>Nucleotide excision repair</topic><topic>Oxidative Stress</topic><topic>Plankton - genetics</topic><topic>Plankton - growth & development</topic><topic>Plankton - metabolism</topic><topic>Planktonic cells</topic><topic>Plant biomass</topic><topic>Population studies</topic><topic>Proteins</topic><topic>proteomics</topic><topic>Pyruvic acid</topic><topic>RNA-seq</topic><topic>Science</topic><topic>Stress, Physiological</topic><topic>transcriptomics</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumitrache, Alexandru</creatorcontrib><creatorcontrib>Klingeman, Dawn M.</creatorcontrib><creatorcontrib>Natzke, Jace</creatorcontrib><creatorcontrib>Rodriguez Jr, Miguel</creatorcontrib><creatorcontrib>Giannone, Richard J.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Brown, Steven D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumitrache, Alexandru</au><au>Klingeman, Dawn M.</au><au>Natzke, Jace</au><au>Rodriguez Jr, Miguel</au><au>Giannone, Richard J.</au><au>Hettich, Robert L.</au><au>Davison, Brian H.</au><au>Brown, Steven D.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-27</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>43583</spage><epage>43583</epage><pages>43583-43583</pages><artnum>43583</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Clostridium (Ruminiclostridium) thermocellum
is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28240279</pmid><doi>10.1038/srep43583</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-02, Vol.7 (1), p.43583-43583, Article 43583 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5327387 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 101/58 45 60 APPLIED LIFE SCIENCES 631/1647/2017 631/326/252/318 82 Antioxidants BASIC BIOLOGICAL SCIENCES biofilm Biofilms Biomarkers Biomass Bioreactors Biosynthetic Pathways Carbohydrate Metabolism Carbohydrates Cell division Cellulose Chemotaxis Clostridium thermocellum Clostridium thermocellum - genetics Clostridium thermocellum - growth & development Clostridium thermocellum - metabolism DNA repair Energy Metabolism Ethanol Fermentation Flagella Gene expression gene expression analysis Gene Expression Regulation Gene Expression Regulation, Bacterial Glycolysis Homeostasis Humanities and Social Sciences Hydrolysates Lipid Metabolism Lipids metabolic engineering Methionine multidisciplinary Nucleotide excision repair Oxidative Stress Plankton - genetics Plankton - growth & development Plankton - metabolism Planktonic cells Plant biomass Population studies Proteins proteomics Pyruvic acid RNA-seq Science Stress, Physiological transcriptomics tRNA |
title | Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specialized%20activities%20and%20expression%20differences%20for%20Clostridium%20thermocellum%20biofilm%20and%20planktonic%20cells&rft.jtitle=Scientific%20reports&rft.au=Dumitrache,%20Alexandru&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20BioEnergy%20Science%20Center%20(BESC)&rft.date=2017-02-27&rft.volume=7&rft.issue=1&rft.spage=43583&rft.epage=43583&rft.pages=43583-43583&rft.artnum=43583&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep43583&rft_dat=%3Cproquest_pubme%3E1901718199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901718199&rft_id=info:pmid/28240279&rfr_iscdi=true |