Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells

Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-02, Vol.7 (1), p.43583-43583, Article 43583
Hauptverfasser: Dumitrache, Alexandru, Klingeman, Dawn M., Natzke, Jace, Rodriguez Jr, Miguel, Giannone, Richard J., Hettich, Robert L., Davison, Brian H., Brown, Steven D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43583
container_issue 1
container_start_page 43583
container_title Scientific reports
container_volume 7
creator Dumitrache, Alexandru
Klingeman, Dawn M.
Natzke, Jace
Rodriguez Jr, Miguel
Giannone, Richard J.
Hettich, Robert L.
Davison, Brian H.
Brown, Steven D.
description Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.
doi_str_mv 10.1038/srep43583
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5327387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901718199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</originalsourceid><addsrcrecordid>eNplkV1vFCEUhomxsc22F_4BM9EbNVnlaxa4aWI2fjRp4oV6TRjm0KWdgRGYRvvry7p1s1Zu4OR9eA-HF6HnBL8jmMn3OcHEWSvZE3RCMW-XlFH69OB8jM5yvsZ1tVRxop6hYyopx1SoE3TzbQLrzeDvoG-MLf7WFw-5MaFv4NeUIGcfQ9N75yBBsFVyMTXrIeaSfO_nsSkbSGO0MAy16Hx0fhj_3J8GE25KDN42WzWfoiNnhgxnD_sC_fj08fv6y_Ly6-eL9YfLpW0ZKcvWEtZbJ6lj1kpuMO4MVh1lkjjRsW4le0dabgzjUjDRQbdSdOUYN1II4yxboPOd7zR3I_QWQklm0FPyo0m_dTRe_6sEv9FX8Va3jApWPRfo5c6gDul1tr6A3dgYAtiiCVsRRniFXj90SfHnDLno0eftnCZAnLMmUtBWSKpoRV89Qq_jnEL9A00UJoJIolSl3uwom2Kuqbr9iwnW26j1PurKvjgccU_-DbYCb3dArlK4gnTQ8j-3ezietSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901718199</pqid></control><display><type>article</type><title>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Dumitrache, Alexandru ; Klingeman, Dawn M. ; Natzke, Jace ; Rodriguez Jr, Miguel ; Giannone, Richard J. ; Hettich, Robert L. ; Davison, Brian H. ; Brown, Steven D.</creator><creatorcontrib>Dumitrache, Alexandru ; Klingeman, Dawn M. ; Natzke, Jace ; Rodriguez Jr, Miguel ; Giannone, Richard J. ; Hettich, Robert L. ; Davison, Brian H. ; Brown, Steven D. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><description>Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep43583</identifier><identifier>PMID: 28240279</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 45 ; 60 APPLIED LIFE SCIENCES ; 631/1647/2017 ; 631/326/252/318 ; 82 ; Antioxidants ; BASIC BIOLOGICAL SCIENCES ; biofilm ; Biofilms ; Biomarkers ; Biomass ; Bioreactors ; Biosynthetic Pathways ; Carbohydrate Metabolism ; Carbohydrates ; Cell division ; Cellulose ; Chemotaxis ; Clostridium thermocellum ; Clostridium thermocellum - genetics ; Clostridium thermocellum - growth &amp; development ; Clostridium thermocellum - metabolism ; DNA repair ; Energy Metabolism ; Ethanol ; Fermentation ; Flagella ; Gene expression ; gene expression analysis ; Gene Expression Regulation ; Gene Expression Regulation, Bacterial ; Glycolysis ; Homeostasis ; Humanities and Social Sciences ; Hydrolysates ; Lipid Metabolism ; Lipids ; metabolic engineering ; Methionine ; multidisciplinary ; Nucleotide excision repair ; Oxidative Stress ; Plankton - genetics ; Plankton - growth &amp; development ; Plankton - metabolism ; Planktonic cells ; Plant biomass ; Population studies ; Proteins ; proteomics ; Pyruvic acid ; RNA-seq ; Science ; Stress, Physiological ; transcriptomics ; tRNA</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.43583-43583, Article 43583</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</citedby><cites>FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28240279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361314$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumitrache, Alexandru</creatorcontrib><creatorcontrib>Klingeman, Dawn M.</creatorcontrib><creatorcontrib>Natzke, Jace</creatorcontrib><creatorcontrib>Rodriguez Jr, Miguel</creatorcontrib><creatorcontrib>Giannone, Richard J.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Brown, Steven D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><title>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.</description><subject>101/58</subject><subject>45</subject><subject>60 APPLIED LIFE SCIENCES</subject><subject>631/1647/2017</subject><subject>631/326/252/318</subject><subject>82</subject><subject>Antioxidants</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biomarkers</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Biosynthetic Pathways</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Cell division</subject><subject>Cellulose</subject><subject>Chemotaxis</subject><subject>Clostridium thermocellum</subject><subject>Clostridium thermocellum - genetics</subject><subject>Clostridium thermocellum - growth &amp; development</subject><subject>Clostridium thermocellum - metabolism</subject><subject>DNA repair</subject><subject>Energy Metabolism</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Flagella</subject><subject>Gene expression</subject><subject>gene expression analysis</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolysates</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>metabolic engineering</subject><subject>Methionine</subject><subject>multidisciplinary</subject><subject>Nucleotide excision repair</subject><subject>Oxidative Stress</subject><subject>Plankton - genetics</subject><subject>Plankton - growth &amp; development</subject><subject>Plankton - metabolism</subject><subject>Planktonic cells</subject><subject>Plant biomass</subject><subject>Population studies</subject><subject>Proteins</subject><subject>proteomics</subject><subject>Pyruvic acid</subject><subject>RNA-seq</subject><subject>Science</subject><subject>Stress, Physiological</subject><subject>transcriptomics</subject><subject>tRNA</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1vFCEUhomxsc22F_4BM9EbNVnlaxa4aWI2fjRp4oV6TRjm0KWdgRGYRvvry7p1s1Zu4OR9eA-HF6HnBL8jmMn3OcHEWSvZE3RCMW-XlFH69OB8jM5yvsZ1tVRxop6hYyopx1SoE3TzbQLrzeDvoG-MLf7WFw-5MaFv4NeUIGcfQ9N75yBBsFVyMTXrIeaSfO_nsSkbSGO0MAy16Hx0fhj_3J8GE25KDN42WzWfoiNnhgxnD_sC_fj08fv6y_Ly6-eL9YfLpW0ZKcvWEtZbJ6lj1kpuMO4MVh1lkjjRsW4le0dabgzjUjDRQbdSdOUYN1II4yxboPOd7zR3I_QWQklm0FPyo0m_dTRe_6sEv9FX8Va3jApWPRfo5c6gDul1tr6A3dgYAtiiCVsRRniFXj90SfHnDLno0eftnCZAnLMmUtBWSKpoRV89Qq_jnEL9A00UJoJIolSl3uwom2Kuqbr9iwnW26j1PurKvjgccU_-DbYCb3dArlK4gnTQ8j-3ezietSc</recordid><startdate>20170227</startdate><enddate>20170227</enddate><creator>Dumitrache, Alexandru</creator><creator>Klingeman, Dawn M.</creator><creator>Natzke, Jace</creator><creator>Rodriguez Jr, Miguel</creator><creator>Giannone, Richard J.</creator><creator>Hettich, Robert L.</creator><creator>Davison, Brian H.</creator><creator>Brown, Steven D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170227</creationdate><title>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</title><author>Dumitrache, Alexandru ; Klingeman, Dawn M. ; Natzke, Jace ; Rodriguez Jr, Miguel ; Giannone, Richard J. ; Hettich, Robert L. ; Davison, Brian H. ; Brown, Steven D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-5c13dcf82f3cc84a00ba09b2381f7b3b68df154aa348737beb6926f34a877afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>101/58</topic><topic>45</topic><topic>60 APPLIED LIFE SCIENCES</topic><topic>631/1647/2017</topic><topic>631/326/252/318</topic><topic>82</topic><topic>Antioxidants</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biomarkers</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Biosynthetic Pathways</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Cell division</topic><topic>Cellulose</topic><topic>Chemotaxis</topic><topic>Clostridium thermocellum</topic><topic>Clostridium thermocellum - genetics</topic><topic>Clostridium thermocellum - growth &amp; development</topic><topic>Clostridium thermocellum - metabolism</topic><topic>DNA repair</topic><topic>Energy Metabolism</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Flagella</topic><topic>Gene expression</topic><topic>gene expression analysis</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolysates</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>metabolic engineering</topic><topic>Methionine</topic><topic>multidisciplinary</topic><topic>Nucleotide excision repair</topic><topic>Oxidative Stress</topic><topic>Plankton - genetics</topic><topic>Plankton - growth &amp; development</topic><topic>Plankton - metabolism</topic><topic>Planktonic cells</topic><topic>Plant biomass</topic><topic>Population studies</topic><topic>Proteins</topic><topic>proteomics</topic><topic>Pyruvic acid</topic><topic>RNA-seq</topic><topic>Science</topic><topic>Stress, Physiological</topic><topic>transcriptomics</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumitrache, Alexandru</creatorcontrib><creatorcontrib>Klingeman, Dawn M.</creatorcontrib><creatorcontrib>Natzke, Jace</creatorcontrib><creatorcontrib>Rodriguez Jr, Miguel</creatorcontrib><creatorcontrib>Giannone, Richard J.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Davison, Brian H.</creatorcontrib><creatorcontrib>Brown, Steven D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumitrache, Alexandru</au><au>Klingeman, Dawn M.</au><au>Natzke, Jace</au><au>Rodriguez Jr, Miguel</au><au>Giannone, Richard J.</au><au>Hettich, Robert L.</au><au>Davison, Brian H.</au><au>Brown, Steven D.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-27</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>43583</spage><epage>43583</epage><pages>43583-43583</pages><artnum>43583</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28240279</pmid><doi>10.1038/srep43583</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-02, Vol.7 (1), p.43583-43583, Article 43583
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5327387
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 101/58
45
60 APPLIED LIFE SCIENCES
631/1647/2017
631/326/252/318
82
Antioxidants
BASIC BIOLOGICAL SCIENCES
biofilm
Biofilms
Biomarkers
Biomass
Bioreactors
Biosynthetic Pathways
Carbohydrate Metabolism
Carbohydrates
Cell division
Cellulose
Chemotaxis
Clostridium thermocellum
Clostridium thermocellum - genetics
Clostridium thermocellum - growth & development
Clostridium thermocellum - metabolism
DNA repair
Energy Metabolism
Ethanol
Fermentation
Flagella
Gene expression
gene expression analysis
Gene Expression Regulation
Gene Expression Regulation, Bacterial
Glycolysis
Homeostasis
Humanities and Social Sciences
Hydrolysates
Lipid Metabolism
Lipids
metabolic engineering
Methionine
multidisciplinary
Nucleotide excision repair
Oxidative Stress
Plankton - genetics
Plankton - growth & development
Plankton - metabolism
Planktonic cells
Plant biomass
Population studies
Proteins
proteomics
Pyruvic acid
RNA-seq
Science
Stress, Physiological
transcriptomics
tRNA
title Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specialized%20activities%20and%20expression%20differences%20for%20Clostridium%20thermocellum%20biofilm%20and%20planktonic%20cells&rft.jtitle=Scientific%20reports&rft.au=Dumitrache,%20Alexandru&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20BioEnergy%20Science%20Center%20(BESC)&rft.date=2017-02-27&rft.volume=7&rft.issue=1&rft.spage=43583&rft.epage=43583&rft.pages=43583-43583&rft.artnum=43583&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep43583&rft_dat=%3Cproquest_pubme%3E1901718199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901718199&rft_id=info:pmid/28240279&rfr_iscdi=true