Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks
We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly. Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for n...
Gespeichert in:
Veröffentlicht in: | Frontiers in neuroscience 2017-02, Vol.11, p.80-80 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | Frontiers in neuroscience |
container_volume | 11 |
creator | Burroni, Javier Taylor, P Corey, Cassian Vachnadze, Tengiz Siegelmann, Hava T |
description | We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly.
Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs.
We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available.
Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates.
Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications. |
doi_str_mv | 10.3389/fnins.2017.00080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5326782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305550361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-88d59333ea2a6db04b990856f7c3125c404f628e816f2de888015dc691efc1883</originalsourceid><addsrcrecordid>eNpdkcuLFDEQxoMo7kPvnqTBi5ceK89OXwQZd1VYXMEH3kImXb1m7UnWVLcy_73Zh4N6qqLqq4_6-DH2hMNKStu_GFNMtBLAuxUAWLjHDrkxolVafr2_75U9YEdElwBGWCUesgNhhe1lB4fsy0nCcoFzDM06J5qLj2mm5kPJwxKw-YjT2NJCcx3j0JxTiNPk51x2zetd8tsYqImpeY9LyclPtZl_5fKdHrEHo58IH9_VY_b59OTT-m17dv7m3frVWRuUUHNr7aB7KSV64c2wAbXpe7DajF2QXOigQI31Z7TcjGJAay1wPQTTcxwDt1Yes5e3vlfLZotDwFQTTO6qxK0vO5d9dP9uUvzmLvJPp6UwnRXV4PmdQck_FqTZbSMFrCET5oUct12nhep6XaXP_pNe5qXU1OSEBK01SMOrCm5VoWSiguP-GQ7uGpq7geauobkbaPXk6d8h9gd_KMnfSaOU0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305550361</pqid></control><display><type>article</type><title>Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Burroni, Javier ; Taylor, P ; Corey, Cassian ; Vachnadze, Tengiz ; Siegelmann, Hava T</creator><creatorcontrib>Burroni, Javier ; Taylor, P ; Corey, Cassian ; Vachnadze, Tengiz ; Siegelmann, Hava T</creatorcontrib><description>We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly.
Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs.
We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available.
Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates.
Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2017.00080</identifier><identifier>PMID: 28289370</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Brain ; Computational neuroscience ; Convulsions & seizures ; Energy consumption ; Epilepsy ; Firing pattern ; Hypoglycemia ; Membrane potential ; Metabolism ; Metabolites ; Neural networks ; Neurological disorders ; Neuronal-glial interactions ; Neurons ; Neuroscience ; Oscillations</subject><ispartof>Frontiers in neuroscience, 2017-02, Vol.11, p.80-80</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2017 Burroni, Taylor, Corey, Vachnadze and Siegelmann. 2017 Burroni, Taylor, Corey, Vachnadze and Siegelmann</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-88d59333ea2a6db04b990856f7c3125c404f628e816f2de888015dc691efc1883</citedby><cites>FETCH-LOGICAL-c424t-88d59333ea2a6db04b990856f7c3125c404f628e816f2de888015dc691efc1883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326782/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326782/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28289370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burroni, Javier</creatorcontrib><creatorcontrib>Taylor, P</creatorcontrib><creatorcontrib>Corey, Cassian</creatorcontrib><creatorcontrib>Vachnadze, Tengiz</creatorcontrib><creatorcontrib>Siegelmann, Hava T</creatorcontrib><title>Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly.
Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs.
We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available.
Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates.
Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications.</description><subject>Brain</subject><subject>Computational neuroscience</subject><subject>Convulsions & seizures</subject><subject>Energy consumption</subject><subject>Epilepsy</subject><subject>Firing pattern</subject><subject>Hypoglycemia</subject><subject>Membrane potential</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Neural networks</subject><subject>Neurological disorders</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Oscillations</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkcuLFDEQxoMo7kPvnqTBi5ceK89OXwQZd1VYXMEH3kImXb1m7UnWVLcy_73Zh4N6qqLqq4_6-DH2hMNKStu_GFNMtBLAuxUAWLjHDrkxolVafr2_75U9YEdElwBGWCUesgNhhe1lB4fsy0nCcoFzDM06J5qLj2mm5kPJwxKw-YjT2NJCcx3j0JxTiNPk51x2zetd8tsYqImpeY9LyclPtZl_5fKdHrEHo58IH9_VY_b59OTT-m17dv7m3frVWRuUUHNr7aB7KSV64c2wAbXpe7DajF2QXOigQI31Z7TcjGJAay1wPQTTcxwDt1Yes5e3vlfLZotDwFQTTO6qxK0vO5d9dP9uUvzmLvJPp6UwnRXV4PmdQck_FqTZbSMFrCET5oUct12nhep6XaXP_pNe5qXU1OSEBK01SMOrCm5VoWSiguP-GQ7uGpq7geauobkbaPXk6d8h9gd_KMnfSaOU0A</recordid><startdate>20170227</startdate><enddate>20170227</enddate><creator>Burroni, Javier</creator><creator>Taylor, P</creator><creator>Corey, Cassian</creator><creator>Vachnadze, Tengiz</creator><creator>Siegelmann, Hava T</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170227</creationdate><title>Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks</title><author>Burroni, Javier ; Taylor, P ; Corey, Cassian ; Vachnadze, Tengiz ; Siegelmann, Hava T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-88d59333ea2a6db04b990856f7c3125c404f628e816f2de888015dc691efc1883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain</topic><topic>Computational neuroscience</topic><topic>Convulsions & seizures</topic><topic>Energy consumption</topic><topic>Epilepsy</topic><topic>Firing pattern</topic><topic>Hypoglycemia</topic><topic>Membrane potential</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Neural networks</topic><topic>Neurological disorders</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Oscillations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burroni, Javier</creatorcontrib><creatorcontrib>Taylor, P</creatorcontrib><creatorcontrib>Corey, Cassian</creatorcontrib><creatorcontrib>Vachnadze, Tengiz</creatorcontrib><creatorcontrib>Siegelmann, Hava T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burroni, Javier</au><au>Taylor, P</au><au>Corey, Cassian</au><au>Vachnadze, Tengiz</au><au>Siegelmann, Hava T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2017-02-27</date><risdate>2017</risdate><volume>11</volume><spage>80</spage><epage>80</epage><pages>80-80</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly.
Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs.
We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available.
Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates.
Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>28289370</pmid><doi>10.3389/fnins.2017.00080</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2017-02, Vol.11, p.80-80 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5326782 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Brain Computational neuroscience Convulsions & seizures Energy consumption Epilepsy Firing pattern Hypoglycemia Membrane potential Metabolism Metabolites Neural networks Neurological disorders Neuronal-glial interactions Neurons Neuroscience Oscillations |
title | Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20Constraints%20Produce%20Self-sustained%20Oscillatory%20Dynamics%20in%20Neuronal%20Networks&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Burroni,%20Javier&rft.date=2017-02-27&rft.volume=11&rft.spage=80&rft.epage=80&rft.pages=80-80&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2017.00080&rft_dat=%3Cproquest_pubme%3E2305550361%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305550361&rft_id=info:pmid/28289370&rfr_iscdi=true |