TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships
Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for...
Gespeichert in:
Veröffentlicht in: | Gene 2016-05, Vol.582 (1), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Gene |
container_volume | 582 |
creator | Wei, Bin Jin, J.-P. |
description | Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure–function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
[Display omitted]
•Troponin T (TnT) is a regulator of striated muscle contraction.•3 Homologous genes have evolved in vertebrates encoding muscle type TnT isoforms.•Alternative splicing and posttranslational modifications add variations of TnT.•TnT gene expression is regulated during development and adaptations.•This review summarizes the current knowledge and perspectives of TnT research. |
doi_str_mv | 10.1016/j.gene.2016.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5325693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111916000378</els_id><sourcerecordid>1773826515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5726-4ed2259c303adc5d486ef4602025e63bad72040753ea721bef807ef46cecd4623</originalsourceid><addsrcrecordid>eNqNkc1u1DAQxy0EokvhBTigHDlsgr_tIFQJVXxUqspluXCxvPZk61U2XuykEjfegTfkSXBIqeACzGVGmt_8x54_Qk8Jbggm8sW-2cEADS11g0mDsbyHVkSrtsaY6ftohZnSNSGkPUGPct7jEkLQh-iESqW4avUKfdpcXW3IupoTXVd28D9L9rK6yLGL6VDNO_K6SrCbejuGOCxUHtPkxinB96_fumlwc6dAC5KvwzE_Rg8622d4cptP0ce3bzbn7-vLD-8uzl9f1k4oKmsOnlLROoaZ9U54riV0XGKKqQDJttYrijlWgoFVlGyh01jNhAPnuaTsFJ0tusdpewDvYBiT7c0xhYNNX0y0wfzZGcK12cUbIxgVsmVF4PmtQIqfJ8ijOYTsoO_tAHHKhmgqOOUt4_9GlWKaSkHE_6BYK90yWVC6oC7FnBN0d48n2MxWm72ZbTCz1QYTU6wuQ89-__bdyC9vC_BqAaAc_yZAMtkFGBz4kMCNxsfwN_0fgLC6DA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770878936</pqid></control><display><type>article</type><title>TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wei, Bin ; Jin, J.-P.</creator><creatorcontrib>Wei, Bin ; Jin, J.-P.</creatorcontrib><description>Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure–function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
[Display omitted]
•Troponin T (TnT) is a regulator of striated muscle contraction.•3 Homologous genes have evolved in vertebrates encoding muscle type TnT isoforms.•Alternative splicing and posttranslational modifications add variations of TnT.•TnT gene expression is regulated during development and adaptations.•This review summarizes the current knowledge and perspectives of TnT research.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/j.gene.2016.01.006</identifier><identifier>PMID: 26774798</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>actin ; Actin Cytoskeleton - genetics ; Actin Cytoskeleton - metabolism ; Alternative splicing ; Alternative Splicing - genetics ; calcium ; Calcium - metabolism ; Cardiac function ; Evolution ; Evolution, Molecular ; Gene Expression Regulation, Developmental ; genes ; Humans ; Isoform ; Muscle Contraction - genetics ; Muscle, Skeletal - growth & development ; Muscle, Skeletal - metabolism ; Muscle, Striated - growth & development ; Muscle, Striated - metabolism ; muscles ; mutation ; myocardium ; Myopathy ; post-translational modification ; Protein Isoforms - biosynthesis ; Protein Isoforms - genetics ; Restrictive proteolysis ; skeletal muscle ; Striated muscle ; Structure-Activity Relationship ; structure-activity relationships ; translation (genetics) ; Troponin ; troponin T ; Troponin T - biosynthesis ; Troponin T - chemistry ; Troponin T - genetics ; Troponin T - metabolism ; vertebrates</subject><ispartof>Gene, 2016-05, Vol.582 (1), p.1-13</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5726-4ed2259c303adc5d486ef4602025e63bad72040753ea721bef807ef46cecd4623</citedby><cites>FETCH-LOGICAL-c5726-4ed2259c303adc5d486ef4602025e63bad72040753ea721bef807ef46cecd4623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378111916000378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26774798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Bin</creatorcontrib><creatorcontrib>Jin, J.-P.</creatorcontrib><title>TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships</title><title>Gene</title><addtitle>Gene</addtitle><description>Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure–function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
[Display omitted]
•Troponin T (TnT) is a regulator of striated muscle contraction.•3 Homologous genes have evolved in vertebrates encoding muscle type TnT isoforms.•Alternative splicing and posttranslational modifications add variations of TnT.•TnT gene expression is regulated during development and adaptations.•This review summarizes the current knowledge and perspectives of TnT research.</description><subject>actin</subject><subject>Actin Cytoskeleton - genetics</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Cardiac function</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Expression Regulation, Developmental</subject><subject>genes</subject><subject>Humans</subject><subject>Isoform</subject><subject>Muscle Contraction - genetics</subject><subject>Muscle, Skeletal - growth & development</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Striated - growth & development</subject><subject>Muscle, Striated - metabolism</subject><subject>muscles</subject><subject>mutation</subject><subject>myocardium</subject><subject>Myopathy</subject><subject>post-translational modification</subject><subject>Protein Isoforms - biosynthesis</subject><subject>Protein Isoforms - genetics</subject><subject>Restrictive proteolysis</subject><subject>skeletal muscle</subject><subject>Striated muscle</subject><subject>Structure-Activity Relationship</subject><subject>structure-activity relationships</subject><subject>translation (genetics)</subject><subject>Troponin</subject><subject>troponin T</subject><subject>Troponin T - biosynthesis</subject><subject>Troponin T - chemistry</subject><subject>Troponin T - genetics</subject><subject>Troponin T - metabolism</subject><subject>vertebrates</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAQxy0EokvhBTigHDlsgr_tIFQJVXxUqspluXCxvPZk61U2XuykEjfegTfkSXBIqeACzGVGmt_8x54_Qk8Jbggm8sW-2cEADS11g0mDsbyHVkSrtsaY6ftohZnSNSGkPUGPct7jEkLQh-iESqW4avUKfdpcXW3IupoTXVd28D9L9rK6yLGL6VDNO_K6SrCbejuGOCxUHtPkxinB96_fumlwc6dAC5KvwzE_Rg8622d4cptP0ce3bzbn7-vLD-8uzl9f1k4oKmsOnlLROoaZ9U54riV0XGKKqQDJttYrijlWgoFVlGyh01jNhAPnuaTsFJ0tusdpewDvYBiT7c0xhYNNX0y0wfzZGcK12cUbIxgVsmVF4PmtQIqfJ8ijOYTsoO_tAHHKhmgqOOUt4_9GlWKaSkHE_6BYK90yWVC6oC7FnBN0d48n2MxWm72ZbTCz1QYTU6wuQ89-__bdyC9vC_BqAaAc_yZAMtkFGBz4kMCNxsfwN_0fgLC6DA</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Wei, Bin</creator><creator>Jin, J.-P.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160510</creationdate><title>TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships</title><author>Wei, Bin ; Jin, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5726-4ed2259c303adc5d486ef4602025e63bad72040753ea721bef807ef46cecd4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>actin</topic><topic>Actin Cytoskeleton - genetics</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Cardiac function</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Expression Regulation, Developmental</topic><topic>genes</topic><topic>Humans</topic><topic>Isoform</topic><topic>Muscle Contraction - genetics</topic><topic>Muscle, Skeletal - growth & development</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Striated - growth & development</topic><topic>Muscle, Striated - metabolism</topic><topic>muscles</topic><topic>mutation</topic><topic>myocardium</topic><topic>Myopathy</topic><topic>post-translational modification</topic><topic>Protein Isoforms - biosynthesis</topic><topic>Protein Isoforms - genetics</topic><topic>Restrictive proteolysis</topic><topic>skeletal muscle</topic><topic>Striated muscle</topic><topic>Structure-Activity Relationship</topic><topic>structure-activity relationships</topic><topic>translation (genetics)</topic><topic>Troponin</topic><topic>troponin T</topic><topic>Troponin T - biosynthesis</topic><topic>Troponin T - chemistry</topic><topic>Troponin T - genetics</topic><topic>Troponin T - metabolism</topic><topic>vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Bin</creatorcontrib><creatorcontrib>Jin, J.-P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Bin</au><au>Jin, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>582</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure–function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
[Display omitted]
•Troponin T (TnT) is a regulator of striated muscle contraction.•3 Homologous genes have evolved in vertebrates encoding muscle type TnT isoforms.•Alternative splicing and posttranslational modifications add variations of TnT.•TnT gene expression is regulated during development and adaptations.•This review summarizes the current knowledge and perspectives of TnT research.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26774798</pmid><doi>10.1016/j.gene.2016.01.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1119 |
ispartof | Gene, 2016-05, Vol.582 (1), p.1-13 |
issn | 0378-1119 1879-0038 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5325693 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | actin Actin Cytoskeleton - genetics Actin Cytoskeleton - metabolism Alternative splicing Alternative Splicing - genetics calcium Calcium - metabolism Cardiac function Evolution Evolution, Molecular Gene Expression Regulation, Developmental genes Humans Isoform Muscle Contraction - genetics Muscle, Skeletal - growth & development Muscle, Skeletal - metabolism Muscle, Striated - growth & development Muscle, Striated - metabolism muscles mutation myocardium Myopathy post-translational modification Protein Isoforms - biosynthesis Protein Isoforms - genetics Restrictive proteolysis skeletal muscle Striated muscle Structure-Activity Relationship structure-activity relationships translation (genetics) Troponin troponin T Troponin T - biosynthesis Troponin T - chemistry Troponin T - genetics Troponin T - metabolism vertebrates |
title | TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure–function relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TNNT1,%20TNNT2,%20and%20TNNT3:%20Isoform%20genes,%20regulation,%20and%20structure%E2%80%93function%20relationships&rft.jtitle=Gene&rft.au=Wei,%20Bin&rft.date=2016-05-10&rft.volume=582&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/j.gene.2016.01.006&rft_dat=%3Cproquest_pubme%3E1773826515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770878936&rft_id=info:pmid/26774798&rft_els_id=S0378111916000378&rfr_iscdi=true |