Constrained evolution of the sex comb in Drosophila simulans
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless,...
Gespeichert in:
Veröffentlicht in: | Journal of evolutionary biology 2017-02, Vol.30 (2), p.388-400 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 2 |
container_start_page | 388 |
container_title | Journal of evolutionary biology |
container_volume | 30 |
creator | Maraqa, M. S. Griffin, R. Sharma, M. D. Wilson, A. J. Hunt, J. Hosken, D. J. House, C. M. |
description | Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima. |
doi_str_mv | 10.1111/jeb.13015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5324616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020866851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5025-8d1a1aeb6d63b170691e31a6864d225b65045009c27c1f4c7295f8c661fd71853</originalsourceid><addsrcrecordid>eNqNkk1rFTEUhkNR2lq76B-QATe6mPacfJzJgAh6rV8U3FjoLmQyGW8uM5Pr5E61_97UW0srSM0mgTw85Lx5GTtCOMa8Tla-OUYBqHbYPkoOZY2Aj_IZEEogvNhjT1JaASBJpXbZHq-0qjXBPnu1iGPaTDaMvi38ZeznTYhjEbtis_RF8j8LF4emCGPxbooprpeht0UKw9zbMT1ljzvbJ394sx-w8_enXxcfy7MvHz4t3pyVTgFXpW7RovUNtSQarIBq9AItaZIt56ohBVIB1I5XDjvpKl6rTjsi7NoKtRIH7PXWu56bwbfOj_nFvVlPYbDTlYk2mPs3Y1iab_HSKMElIWXBixvBFL_PPm3MEJLzfR7CxzkZDhw0kVb4IIqatBCqEvV_oBI1CFA8o8__QldxnsYcWqZqVYPU_AGKpEaJ4jqNl1vK5R9Jk-9ug0Aw130wuQ_mdx8y--xucrfknwJk4GQL_Ai9v_q3yXw-fbtV_gLlPbuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864814135</pqid></control><display><type>article</type><title>Constrained evolution of the sex comb in Drosophila simulans</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Maraqa, M. S. ; Griffin, R. ; Sharma, M. D. ; Wilson, A. J. ; Hunt, J. ; Hosken, D. J. ; House, C. M.</creator><creatorcontrib>Maraqa, M. S. ; Griffin, R. ; Sharma, M. D. ; Wilson, A. J. ; Hunt, J. ; Hosken, D. J. ; House, C. M.</creatorcontrib><description>Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/jeb.13015</identifier><identifier>PMID: 27859860</identifier><language>eng</language><publisher>Switzerland: Blackwell Publishing Ltd</publisher><subject>Animals ; Arenas ; Biological Evolution ; Copulation ; Covariance ; Drosophila ; Drosophila simulans ; Evolution ; Female ; females ; Fitness ; genetic constraints ; Genetic diversity ; Genetic variance ; Genetic Variation ; Insects ; Male ; Males ; Mate selection ; Morphology ; paternity ; Phenotype ; Population genetics ; Populations ; post‐copulatory selection ; precopulatory selection ; prediction ; Quantitative genetics ; Research Paper ; Research Papers ; selection gradients ; Selection, Genetic ; Sex ; Sex Characteristics ; sex combs ; Sexual Behavior, Animal ; Sexual selection ; spermatozoa</subject><ispartof>Journal of evolutionary biology, 2017-02, Vol.30 (2), p.388-400</ispartof><rights>2016 The Authors. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology</rights><rights>2016 The Authors. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.</rights><rights>Copyright © 2017 European Society for Evolutionary Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5025-8d1a1aeb6d63b170691e31a6864d225b65045009c27c1f4c7295f8c661fd71853</citedby><cites>FETCH-LOGICAL-c5025-8d1a1aeb6d63b170691e31a6864d225b65045009c27c1f4c7295f8c661fd71853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjeb.13015$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjeb.13015$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27859860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maraqa, M. S.</creatorcontrib><creatorcontrib>Griffin, R.</creatorcontrib><creatorcontrib>Sharma, M. D.</creatorcontrib><creatorcontrib>Wilson, A. J.</creatorcontrib><creatorcontrib>Hunt, J.</creatorcontrib><creatorcontrib>Hosken, D. J.</creatorcontrib><creatorcontrib>House, C. M.</creatorcontrib><title>Constrained evolution of the sex comb in Drosophila simulans</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.</description><subject>Animals</subject><subject>Arenas</subject><subject>Biological Evolution</subject><subject>Copulation</subject><subject>Covariance</subject><subject>Drosophila</subject><subject>Drosophila simulans</subject><subject>Evolution</subject><subject>Female</subject><subject>females</subject><subject>Fitness</subject><subject>genetic constraints</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Insects</subject><subject>Male</subject><subject>Males</subject><subject>Mate selection</subject><subject>Morphology</subject><subject>paternity</subject><subject>Phenotype</subject><subject>Population genetics</subject><subject>Populations</subject><subject>post‐copulatory selection</subject><subject>precopulatory selection</subject><subject>prediction</subject><subject>Quantitative genetics</subject><subject>Research Paper</subject><subject>Research Papers</subject><subject>selection gradients</subject><subject>Selection, Genetic</subject><subject>Sex</subject><subject>Sex Characteristics</subject><subject>sex combs</subject><subject>Sexual Behavior, Animal</subject><subject>Sexual selection</subject><subject>spermatozoa</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkk1rFTEUhkNR2lq76B-QATe6mPacfJzJgAh6rV8U3FjoLmQyGW8uM5Pr5E61_97UW0srSM0mgTw85Lx5GTtCOMa8Tla-OUYBqHbYPkoOZY2Aj_IZEEogvNhjT1JaASBJpXbZHq-0qjXBPnu1iGPaTDaMvi38ZeznTYhjEbtis_RF8j8LF4emCGPxbooprpeht0UKw9zbMT1ljzvbJ394sx-w8_enXxcfy7MvHz4t3pyVTgFXpW7RovUNtSQarIBq9AItaZIt56ohBVIB1I5XDjvpKl6rTjsi7NoKtRIH7PXWu56bwbfOj_nFvVlPYbDTlYk2mPs3Y1iab_HSKMElIWXBixvBFL_PPm3MEJLzfR7CxzkZDhw0kVb4IIqatBCqEvV_oBI1CFA8o8__QldxnsYcWqZqVYPU_AGKpEaJ4jqNl1vK5R9Jk-9ug0Aw130wuQ_mdx8y--xucrfknwJk4GQL_Ai9v_q3yXw-fbtV_gLlPbuA</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Maraqa, M. S.</creator><creator>Griffin, R.</creator><creator>Sharma, M. D.</creator><creator>Wilson, A. J.</creator><creator>Hunt, J.</creator><creator>Hosken, D. J.</creator><creator>House, C. M.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>Constrained evolution of the sex comb in Drosophila simulans</title><author>Maraqa, M. S. ; Griffin, R. ; Sharma, M. D. ; Wilson, A. J. ; Hunt, J. ; Hosken, D. J. ; House, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5025-8d1a1aeb6d63b170691e31a6864d225b65045009c27c1f4c7295f8c661fd71853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Arenas</topic><topic>Biological Evolution</topic><topic>Copulation</topic><topic>Covariance</topic><topic>Drosophila</topic><topic>Drosophila simulans</topic><topic>Evolution</topic><topic>Female</topic><topic>females</topic><topic>Fitness</topic><topic>genetic constraints</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Insects</topic><topic>Male</topic><topic>Males</topic><topic>Mate selection</topic><topic>Morphology</topic><topic>paternity</topic><topic>Phenotype</topic><topic>Population genetics</topic><topic>Populations</topic><topic>post‐copulatory selection</topic><topic>precopulatory selection</topic><topic>prediction</topic><topic>Quantitative genetics</topic><topic>Research Paper</topic><topic>Research Papers</topic><topic>selection gradients</topic><topic>Selection, Genetic</topic><topic>Sex</topic><topic>Sex Characteristics</topic><topic>sex combs</topic><topic>Sexual Behavior, Animal</topic><topic>Sexual selection</topic><topic>spermatozoa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maraqa, M. S.</creatorcontrib><creatorcontrib>Griffin, R.</creatorcontrib><creatorcontrib>Sharma, M. D.</creatorcontrib><creatorcontrib>Wilson, A. J.</creatorcontrib><creatorcontrib>Hunt, J.</creatorcontrib><creatorcontrib>Hosken, D. J.</creatorcontrib><creatorcontrib>House, C. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maraqa, M. S.</au><au>Griffin, R.</au><au>Sharma, M. D.</au><au>Wilson, A. J.</au><au>Hunt, J.</au><au>Hosken, D. J.</au><au>House, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained evolution of the sex comb in Drosophila simulans</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2017-02</date><risdate>2017</risdate><volume>30</volume><issue>2</issue><spage>388</spage><epage>400</epage><pages>388-400</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.</abstract><cop>Switzerland</cop><pub>Blackwell Publishing Ltd</pub><pmid>27859860</pmid><doi>10.1111/jeb.13015</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1010-061X |
ispartof | Journal of evolutionary biology, 2017-02, Vol.30 (2), p.388-400 |
issn | 1010-061X 1420-9101 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5324616 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Arenas Biological Evolution Copulation Covariance Drosophila Drosophila simulans Evolution Female females Fitness genetic constraints Genetic diversity Genetic variance Genetic Variation Insects Male Males Mate selection Morphology paternity Phenotype Population genetics Populations post‐copulatory selection precopulatory selection prediction Quantitative genetics Research Paper Research Papers selection gradients Selection, Genetic Sex Sex Characteristics sex combs Sexual Behavior, Animal Sexual selection spermatozoa |
title | Constrained evolution of the sex comb in Drosophila simulans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20evolution%20of%20the%20sex%20comb%20in%20Drosophila%20simulans&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Maraqa,%20M.%20S.&rft.date=2017-02&rft.volume=30&rft.issue=2&rft.spage=388&rft.epage=400&rft.pages=388-400&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/jeb.13015&rft_dat=%3Cproquest_pubme%3E2020866851%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864814135&rft_id=info:pmid/27859860&rfr_iscdi=true |