Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-02, Vol.7 (1), p.43355-43355, Article 43355
Hauptverfasser: Verbeke, Tobin J., Giannone, Richard J., Klingeman, Dawn M., Engle, Nancy L., Rydzak, Thomas, Guss, Adam M., Tschaplinski, Timothy J., Brown, Steven D., Hettich, Robert L., Elkins, James G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43355
container_issue 1
container_start_page 43355
container_title Scientific reports
container_volume 7
creator Verbeke, Tobin J.
Giannone, Richard J.
Klingeman, Dawn M.
Engle, Nancy L.
Rydzak, Thomas
Guss, Adam M.
Tschaplinski, Timothy J.
Brown, Steven D.
Hettich, Robert L.
Elkins, James G.
description Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.
doi_str_mv 10.1038/srep43355
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5322536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1871555117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-3a36f33871074b47ace795ee5be5f6d5b747f81596025dc3029f7846c39e5f13</originalsourceid><addsrcrecordid>eNplkU1v1DAQhi0EolXpgT-ALLgAUsCO4zi-IFXLp1QJDr1bjjPZdZXYwXYQ---ZsmW1gC-2Zh6_8_ES8pSzN5yJ7m1OsDRCSPmAnNeskVUt6vrhyfuMXOZ8y_DIWjdcPyZndVcLxpk-J_tvEErMQPO6tSlTH3a-94XOUGwfJ59nasOAYZfAIgY_lwQ5-xhoHDFFr7bpfVX2C1C3d5N3dEFBu8BS_AD4j26mmEvyg19nWnaQ5uhgmtb5CXk02inD5f19QW4-frjZfK6uv376srm6rpwUvFTCinYUolOcqaZvlHWgtASQPcixHWSvGjV2XOqW1XJwgtV6VF3TOqER4OKCvDvILms_w-Cwu2QnsyQ_27Q30Xrzdyb4ndnGH0bi6qRoUeD5QQDH8CY7X8DtXAwBXDFctIw1GqGX91VS_L5CLmb2-W5OGyCu2XDsX0rJuUL0xT_obVxTwBUYrhlXvG1-U68OlEsxo8XjsWPOzJ3v5ug7ss9ORzySf1xG4PUByJgKW0gnJf9T-wWu47iC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901716417</pqid></control><display><type>article</type><title>Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Verbeke, Tobin J. ; Giannone, Richard J. ; Klingeman, Dawn M. ; Engle, Nancy L. ; Rydzak, Thomas ; Guss, Adam M. ; Tschaplinski, Timothy J. ; Brown, Steven D. ; Hettich, Robert L. ; Elkins, James G.</creator><creatorcontrib>Verbeke, Tobin J. ; Giannone, Richard J. ; Klingeman, Dawn M. ; Engle, Nancy L. ; Rydzak, Thomas ; Guss, Adam M. ; Tschaplinski, Timothy J. ; Brown, Steven D. ; Hettich, Robert L. ; Elkins, James G. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><description>Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep43355</identifier><identifier>PMID: 28230109</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/91 ; 45/70 ; 60 APPLIED LIFE SCIENCES ; 631/326/252/318 ; 631/326/2522 ; 82/58 ; applied microbiology ; BASIC BIOLOGICAL SCIENCES ; Biomass ; Cell walls ; Cellulose ; Cellulose - metabolism ; Clonal deletion ; Clostridium thermocellum - drug effects ; Clostridium thermocellum - growth &amp; development ; Clostridium thermocellum - metabolism ; Fermentation ; Gene deletion ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial - drug effects ; Growth Inhibitors - metabolism ; Humanities and Social Sciences ; metabolic engineering ; Metabolic Networks and Pathways - drug effects ; Metabolism ; Metabolites ; Metabolomics ; multidisciplinary ; Oligopeptides - biosynthesis ; Pentoses - metabolism ; Peptides, Cyclic - biosynthesis ; Renewable fuels ; Ribonucleic acid ; RNA ; Science ; Sugar ; Supplements ; Xylan ; Xylitol ; Xylitol dehydrogenase ; Xylose</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.43355-43355, Article 43355</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-3a36f33871074b47ace795ee5be5f6d5b747f81596025dc3029f7846c39e5f13</citedby><cites>FETCH-LOGICAL-c531t-3a36f33871074b47ace795ee5be5f6d5b747f81596025dc3029f7846c39e5f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28230109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1360049$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Verbeke, Tobin J.</creatorcontrib><creatorcontrib>Giannone, Richard J.</creatorcontrib><creatorcontrib>Klingeman, Dawn M.</creatorcontrib><creatorcontrib>Engle, Nancy L.</creatorcontrib><creatorcontrib>Rydzak, Thomas</creatorcontrib><creatorcontrib>Guss, Adam M.</creatorcontrib><creatorcontrib>Tschaplinski, Timothy J.</creatorcontrib><creatorcontrib>Brown, Steven D.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Elkins, James G.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><title>Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.</description><subject>38</subject><subject>38/91</subject><subject>45/70</subject><subject>60 APPLIED LIFE SCIENCES</subject><subject>631/326/252/318</subject><subject>631/326/2522</subject><subject>82/58</subject><subject>applied microbiology</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomass</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Clonal deletion</subject><subject>Clostridium thermocellum - drug effects</subject><subject>Clostridium thermocellum - growth &amp; development</subject><subject>Clostridium thermocellum - metabolism</subject><subject>Fermentation</subject><subject>Gene deletion</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Growth Inhibitors - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>metabolic engineering</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>multidisciplinary</subject><subject>Oligopeptides - biosynthesis</subject><subject>Pentoses - metabolism</subject><subject>Peptides, Cyclic - biosynthesis</subject><subject>Renewable fuels</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Sugar</subject><subject>Supplements</subject><subject>Xylan</subject><subject>Xylitol</subject><subject>Xylitol dehydrogenase</subject><subject>Xylose</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1v1DAQhi0EolXpgT-ALLgAUsCO4zi-IFXLp1QJDr1bjjPZdZXYwXYQ---ZsmW1gC-2Zh6_8_ES8pSzN5yJ7m1OsDRCSPmAnNeskVUt6vrhyfuMXOZ8y_DIWjdcPyZndVcLxpk-J_tvEErMQPO6tSlTH3a-94XOUGwfJ59nasOAYZfAIgY_lwQ5-xhoHDFFr7bpfVX2C1C3d5N3dEFBu8BS_AD4j26mmEvyg19nWnaQ5uhgmtb5CXk02inD5f19QW4-frjZfK6uv376srm6rpwUvFTCinYUolOcqaZvlHWgtASQPcixHWSvGjV2XOqW1XJwgtV6VF3TOqER4OKCvDvILms_w-Cwu2QnsyQ_27Q30Xrzdyb4ndnGH0bi6qRoUeD5QQDH8CY7X8DtXAwBXDFctIw1GqGX91VS_L5CLmb2-W5OGyCu2XDsX0rJuUL0xT_obVxTwBUYrhlXvG1-U68OlEsxo8XjsWPOzJ3v5ug7ss9ORzySf1xG4PUByJgKW0gnJf9T-wWu47iC</recordid><startdate>20170223</startdate><enddate>20170223</enddate><creator>Verbeke, Tobin J.</creator><creator>Giannone, Richard J.</creator><creator>Klingeman, Dawn M.</creator><creator>Engle, Nancy L.</creator><creator>Rydzak, Thomas</creator><creator>Guss, Adam M.</creator><creator>Tschaplinski, Timothy J.</creator><creator>Brown, Steven D.</creator><creator>Hettich, Robert L.</creator><creator>Elkins, James G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170223</creationdate><title>Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum</title><author>Verbeke, Tobin J. ; Giannone, Richard J. ; Klingeman, Dawn M. ; Engle, Nancy L. ; Rydzak, Thomas ; Guss, Adam M. ; Tschaplinski, Timothy J. ; Brown, Steven D. ; Hettich, Robert L. ; Elkins, James G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-3a36f33871074b47ace795ee5be5f6d5b747f81596025dc3029f7846c39e5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38</topic><topic>38/91</topic><topic>45/70</topic><topic>60 APPLIED LIFE SCIENCES</topic><topic>631/326/252/318</topic><topic>631/326/2522</topic><topic>82/58</topic><topic>applied microbiology</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomass</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Clonal deletion</topic><topic>Clostridium thermocellum - drug effects</topic><topic>Clostridium thermocellum - growth &amp; development</topic><topic>Clostridium thermocellum - metabolism</topic><topic>Fermentation</topic><topic>Gene deletion</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Growth Inhibitors - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>metabolic engineering</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>multidisciplinary</topic><topic>Oligopeptides - biosynthesis</topic><topic>Pentoses - metabolism</topic><topic>Peptides, Cyclic - biosynthesis</topic><topic>Renewable fuels</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Sugar</topic><topic>Supplements</topic><topic>Xylan</topic><topic>Xylitol</topic><topic>Xylitol dehydrogenase</topic><topic>Xylose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbeke, Tobin J.</creatorcontrib><creatorcontrib>Giannone, Richard J.</creatorcontrib><creatorcontrib>Klingeman, Dawn M.</creatorcontrib><creatorcontrib>Engle, Nancy L.</creatorcontrib><creatorcontrib>Rydzak, Thomas</creatorcontrib><creatorcontrib>Guss, Adam M.</creatorcontrib><creatorcontrib>Tschaplinski, Timothy J.</creatorcontrib><creatorcontrib>Brown, Steven D.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Elkins, James G.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbeke, Tobin J.</au><au>Giannone, Richard J.</au><au>Klingeman, Dawn M.</au><au>Engle, Nancy L.</au><au>Rydzak, Thomas</au><au>Guss, Adam M.</au><au>Tschaplinski, Timothy J.</au><au>Brown, Steven D.</au><au>Hettich, Robert L.</au><au>Elkins, James G.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-23</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>43355</spage><epage>43355</epage><pages>43355-43355</pages><artnum>43355</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28230109</pmid><doi>10.1038/srep43355</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-02, Vol.7 (1), p.43355-43355, Article 43355
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5322536
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 38
38/91
45/70
60 APPLIED LIFE SCIENCES
631/326/252/318
631/326/2522
82/58
applied microbiology
BASIC BIOLOGICAL SCIENCES
Biomass
Cell walls
Cellulose
Cellulose - metabolism
Clonal deletion
Clostridium thermocellum - drug effects
Clostridium thermocellum - growth & development
Clostridium thermocellum - metabolism
Fermentation
Gene deletion
Gene Expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial - drug effects
Growth Inhibitors - metabolism
Humanities and Social Sciences
metabolic engineering
Metabolic Networks and Pathways - drug effects
Metabolism
Metabolites
Metabolomics
multidisciplinary
Oligopeptides - biosynthesis
Pentoses - metabolism
Peptides, Cyclic - biosynthesis
Renewable fuels
Ribonucleic acid
RNA
Science
Sugar
Supplements
Xylan
Xylitol
Xylitol dehydrogenase
Xylose
title Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pentose%20sugars%20inhibit%20metabolism%20and%20increase%20expression%20of%20an%20AgrD-type%20cyclic%20pentapeptide%20in%20Clostridium%20thermocellum&rft.jtitle=Scientific%20reports&rft.au=Verbeke,%20Tobin%20J.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20BioEnergy%20Science%20Center%20(BESC)&rft.date=2017-02-23&rft.volume=7&rft.issue=1&rft.spage=43355&rft.epage=43355&rft.pages=43355-43355&rft.artnum=43355&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep43355&rft_dat=%3Cproquest_pubme%3E1871555117%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901716417&rft_id=info:pmid/28230109&rfr_iscdi=true