Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis

During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-02, Vol.7 (1), p.43165-43165, Article 43165
Hauptverfasser: McGarry, Trudy, Biniecka, Monika, Gao, Wei, Cluxton, Deborah, Canavan, Mary, Wade, Siobhan, Wade, Sarah, Gallagher, Lorna, Orr, Carl, Veale, Douglas J., Fearon, Ursula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43165
container_issue 1
container_start_page 43165
container_title Scientific reports
container_volume 7
creator McGarry, Trudy
Biniecka, Monika
Gao, Wei
Cluxton, Deborah
Canavan, Mary
Wade, Siobhan
Wade, Sarah
Gallagher, Lorna
Orr, Carl
Veale, Douglas J.
Fearon, Ursula
description During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.
doi_str_mv 10.1038/srep43165
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5320554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901721358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</originalsourceid><addsrcrecordid>eNplkV1LHDEYhYO0qFgv_AMy4E0rTJtkJjPJTUHEL1goLHodMvnYyTKTjMlE8d83urqsbW4SOM857xsOACcI_kSwor9i0FNdoYbsgUMMa1LiCuMvO-8DcBzjGuZDMKsR2wcHmGJMYIsOwXqpox_SbL0rvCnuF0tcWqeS1KqwzgxiHMWbOPfBp1VfjMLZKQ3iwzHqWXR-sLKYxNw_i5eYfcWy1ykbvVXFRchWO9v4DXw1Yoj6-P0-Ag_XV_eXt-Xiz83d5cWilHVF51I3ghkiDFVEKUZq2ioJWSMJgVAho5tGd23XZaSpWqQZxbXsGtMqLGBTK1Mdgd-b3Cl1o1ZSuzmIgU_BjiK8cC8s_6w42_OVf-KkwpCQOgd8fw8I_jHpOPPRRqmHQTjtU-SItpBRAgnL6Nk_6Nqn4PL3OGIQtRhVhGbqx4aSwcfcl9kugyB_LZFvS8zs6e72W_Kjsgycb4CYJbfSYWfkf2l_AVWmqNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901721358</pqid></control><display><type>article</type><title>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McGarry, Trudy ; Biniecka, Monika ; Gao, Wei ; Cluxton, Deborah ; Canavan, Mary ; Wade, Siobhan ; Wade, Sarah ; Gallagher, Lorna ; Orr, Carl ; Veale, Douglas J. ; Fearon, Ursula</creator><creatorcontrib>McGarry, Trudy ; Biniecka, Monika ; Gao, Wei ; Cluxton, Deborah ; Canavan, Mary ; Wade, Siobhan ; Wade, Sarah ; Gallagher, Lorna ; Orr, Carl ; Veale, Douglas J. ; Fearon, Ursula</creatorcontrib><description>During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep43165</identifier><identifier>PMID: 28225071</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 13/95 ; 14/28 ; 14/35 ; 38/77 ; 631/250/2520 ; 631/250/256/2515 ; 631/250/262/2106/2108 ; 631/250/516/1909 ; 82/51 ; 96/2 ; Adenosine Triphosphate - biosynthesis ; Arthritis, Rheumatoid - pathology ; Bioenergetics ; Cell Respiration ; Cells, Cultured ; Electron transport ; Fibroblasts - pathology ; Gene Expression Profiling ; Gene regulation ; Genes, Mitochondrial ; Glycolysis ; Humanities and Social Sciences ; Humans ; Inflammation ; Innate immunity ; Lipid Peroxidation ; Membrane potential ; Membrane Potential, Mitochondrial ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; multidisciplinary ; Nuclear transport ; Oxidative metabolism ; Pathogenesis ; Peroxidation ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Respiration ; Rheumatoid arthritis ; Science ; Signal transduction ; TLR2 protein ; Toll-Like Receptor 2 - metabolism ; Toll-like receptors ; Translocation ; Tumors</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.43165-43165, Article 43165</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</citedby><cites>FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320554/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320554/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28225071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGarry, Trudy</creatorcontrib><creatorcontrib>Biniecka, Monika</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Cluxton, Deborah</creatorcontrib><creatorcontrib>Canavan, Mary</creatorcontrib><creatorcontrib>Wade, Siobhan</creatorcontrib><creatorcontrib>Wade, Sarah</creatorcontrib><creatorcontrib>Gallagher, Lorna</creatorcontrib><creatorcontrib>Orr, Carl</creatorcontrib><creatorcontrib>Veale, Douglas J.</creatorcontrib><creatorcontrib>Fearon, Ursula</creatorcontrib><title>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.</description><subject>13/31</subject><subject>13/95</subject><subject>14/28</subject><subject>14/35</subject><subject>38/77</subject><subject>631/250/2520</subject><subject>631/250/256/2515</subject><subject>631/250/262/2106/2108</subject><subject>631/250/516/1909</subject><subject>82/51</subject><subject>96/2</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Arthritis, Rheumatoid - pathology</subject><subject>Bioenergetics</subject><subject>Cell Respiration</subject><subject>Cells, Cultured</subject><subject>Electron transport</subject><subject>Fibroblasts - pathology</subject><subject>Gene Expression Profiling</subject><subject>Gene regulation</subject><subject>Genes, Mitochondrial</subject><subject>Glycolysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>Lipid Peroxidation</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Nuclear transport</subject><subject>Oxidative metabolism</subject><subject>Pathogenesis</subject><subject>Peroxidation</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiration</subject><subject>Rheumatoid arthritis</subject><subject>Science</subject><subject>Signal transduction</subject><subject>TLR2 protein</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptors</subject><subject>Translocation</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LHDEYhYO0qFgv_AMy4E0rTJtkJjPJTUHEL1goLHodMvnYyTKTjMlE8d83urqsbW4SOM857xsOACcI_kSwor9i0FNdoYbsgUMMa1LiCuMvO-8DcBzjGuZDMKsR2wcHmGJMYIsOwXqpox_SbL0rvCnuF0tcWqeS1KqwzgxiHMWbOPfBp1VfjMLZKQ3iwzHqWXR-sLKYxNw_i5eYfcWy1ykbvVXFRchWO9v4DXw1Yoj6-P0-Ag_XV_eXt-Xiz83d5cWilHVF51I3ghkiDFVEKUZq2ioJWSMJgVAho5tGd23XZaSpWqQZxbXsGtMqLGBTK1Mdgd-b3Cl1o1ZSuzmIgU_BjiK8cC8s_6w42_OVf-KkwpCQOgd8fw8I_jHpOPPRRqmHQTjtU-SItpBRAgnL6Nk_6Nqn4PL3OGIQtRhVhGbqx4aSwcfcl9kugyB_LZFvS8zs6e72W_Kjsgycb4CYJbfSYWfkf2l_AVWmqNM</recordid><startdate>20170222</startdate><enddate>20170222</enddate><creator>McGarry, Trudy</creator><creator>Biniecka, Monika</creator><creator>Gao, Wei</creator><creator>Cluxton, Deborah</creator><creator>Canavan, Mary</creator><creator>Wade, Siobhan</creator><creator>Wade, Sarah</creator><creator>Gallagher, Lorna</creator><creator>Orr, Carl</creator><creator>Veale, Douglas J.</creator><creator>Fearon, Ursula</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170222</creationdate><title>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</title><author>McGarry, Trudy ; Biniecka, Monika ; Gao, Wei ; Cluxton, Deborah ; Canavan, Mary ; Wade, Siobhan ; Wade, Sarah ; Gallagher, Lorna ; Orr, Carl ; Veale, Douglas J. ; Fearon, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/31</topic><topic>13/95</topic><topic>14/28</topic><topic>14/35</topic><topic>38/77</topic><topic>631/250/2520</topic><topic>631/250/256/2515</topic><topic>631/250/262/2106/2108</topic><topic>631/250/516/1909</topic><topic>82/51</topic><topic>96/2</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Arthritis, Rheumatoid - pathology</topic><topic>Bioenergetics</topic><topic>Cell Respiration</topic><topic>Cells, Cultured</topic><topic>Electron transport</topic><topic>Fibroblasts - pathology</topic><topic>Gene Expression Profiling</topic><topic>Gene regulation</topic><topic>Genes, Mitochondrial</topic><topic>Glycolysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>Lipid Peroxidation</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Nuclear transport</topic><topic>Oxidative metabolism</topic><topic>Pathogenesis</topic><topic>Peroxidation</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiration</topic><topic>Rheumatoid arthritis</topic><topic>Science</topic><topic>Signal transduction</topic><topic>TLR2 protein</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptors</topic><topic>Translocation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGarry, Trudy</creatorcontrib><creatorcontrib>Biniecka, Monika</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Cluxton, Deborah</creatorcontrib><creatorcontrib>Canavan, Mary</creatorcontrib><creatorcontrib>Wade, Siobhan</creatorcontrib><creatorcontrib>Wade, Sarah</creatorcontrib><creatorcontrib>Gallagher, Lorna</creatorcontrib><creatorcontrib>Orr, Carl</creatorcontrib><creatorcontrib>Veale, Douglas J.</creatorcontrib><creatorcontrib>Fearon, Ursula</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGarry, Trudy</au><au>Biniecka, Monika</au><au>Gao, Wei</au><au>Cluxton, Deborah</au><au>Canavan, Mary</au><au>Wade, Siobhan</au><au>Wade, Sarah</au><au>Gallagher, Lorna</au><au>Orr, Carl</au><au>Veale, Douglas J.</au><au>Fearon, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-22</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>43165</spage><epage>43165</epage><pages>43165-43165</pages><artnum>43165</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28225071</pmid><doi>10.1038/srep43165</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-02, Vol.7 (1), p.43165-43165, Article 43165
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5320554
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 13/31
13/95
14/28
14/35
38/77
631/250/2520
631/250/256/2515
631/250/262/2106/2108
631/250/516/1909
82/51
96/2
Adenosine Triphosphate - biosynthesis
Arthritis, Rheumatoid - pathology
Bioenergetics
Cell Respiration
Cells, Cultured
Electron transport
Fibroblasts - pathology
Gene Expression Profiling
Gene regulation
Genes, Mitochondrial
Glycolysis
Humanities and Social Sciences
Humans
Inflammation
Innate immunity
Lipid Peroxidation
Membrane potential
Membrane Potential, Mitochondrial
Metabolic Networks and Pathways
Metabolic pathways
Metabolism
Mitochondria
Mitochondria - metabolism
multidisciplinary
Nuclear transport
Oxidative metabolism
Pathogenesis
Peroxidation
Reactive oxygen species
Reactive Oxygen Species - metabolism
Respiration
Rheumatoid arthritis
Science
Signal transduction
TLR2 protein
Toll-Like Receptor 2 - metabolism
Toll-like receptors
Translocation
Tumors
title Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolution%20of%20TLR2-induced%20inflammation%20through%20manipulation%20of%20metabolic%20pathways%20in%20Rheumatoid%20Arthritis&rft.jtitle=Scientific%20reports&rft.au=McGarry,%20Trudy&rft.date=2017-02-22&rft.volume=7&rft.issue=1&rft.spage=43165&rft.epage=43165&rft.pages=43165-43165&rft.artnum=43165&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep43165&rft_dat=%3Cproquest_pubme%3E1901721358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901721358&rft_id=info:pmid/28225071&rfr_iscdi=true