Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis
During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulat...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-02, Vol.7 (1), p.43165-43165, Article 43165 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43165 |
---|---|
container_issue | 1 |
container_start_page | 43165 |
container_title | Scientific reports |
container_volume | 7 |
creator | McGarry, Trudy Biniecka, Monika Gao, Wei Cluxton, Deborah Canavan, Mary Wade, Siobhan Wade, Sarah Gallagher, Lorna Orr, Carl Veale, Douglas J. Fearon, Ursula |
description | During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis. |
doi_str_mv | 10.1038/srep43165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5320554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901721358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</originalsourceid><addsrcrecordid>eNplkV1LHDEYhYO0qFgv_AMy4E0rTJtkJjPJTUHEL1goLHodMvnYyTKTjMlE8d83urqsbW4SOM857xsOACcI_kSwor9i0FNdoYbsgUMMa1LiCuMvO-8DcBzjGuZDMKsR2wcHmGJMYIsOwXqpox_SbL0rvCnuF0tcWqeS1KqwzgxiHMWbOPfBp1VfjMLZKQ3iwzHqWXR-sLKYxNw_i5eYfcWy1ykbvVXFRchWO9v4DXw1Yoj6-P0-Ag_XV_eXt-Xiz83d5cWilHVF51I3ghkiDFVEKUZq2ioJWSMJgVAho5tGd23XZaSpWqQZxbXsGtMqLGBTK1Mdgd-b3Cl1o1ZSuzmIgU_BjiK8cC8s_6w42_OVf-KkwpCQOgd8fw8I_jHpOPPRRqmHQTjtU-SItpBRAgnL6Nk_6Nqn4PL3OGIQtRhVhGbqx4aSwcfcl9kugyB_LZFvS8zs6e72W_Kjsgycb4CYJbfSYWfkf2l_AVWmqNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901721358</pqid></control><display><type>article</type><title>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McGarry, Trudy ; Biniecka, Monika ; Gao, Wei ; Cluxton, Deborah ; Canavan, Mary ; Wade, Siobhan ; Wade, Sarah ; Gallagher, Lorna ; Orr, Carl ; Veale, Douglas J. ; Fearon, Ursula</creator><creatorcontrib>McGarry, Trudy ; Biniecka, Monika ; Gao, Wei ; Cluxton, Deborah ; Canavan, Mary ; Wade, Siobhan ; Wade, Sarah ; Gallagher, Lorna ; Orr, Carl ; Veale, Douglas J. ; Fearon, Ursula</creatorcontrib><description>During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep43165</identifier><identifier>PMID: 28225071</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 13/95 ; 14/28 ; 14/35 ; 38/77 ; 631/250/2520 ; 631/250/256/2515 ; 631/250/262/2106/2108 ; 631/250/516/1909 ; 82/51 ; 96/2 ; Adenosine Triphosphate - biosynthesis ; Arthritis, Rheumatoid - pathology ; Bioenergetics ; Cell Respiration ; Cells, Cultured ; Electron transport ; Fibroblasts - pathology ; Gene Expression Profiling ; Gene regulation ; Genes, Mitochondrial ; Glycolysis ; Humanities and Social Sciences ; Humans ; Inflammation ; Innate immunity ; Lipid Peroxidation ; Membrane potential ; Membrane Potential, Mitochondrial ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; multidisciplinary ; Nuclear transport ; Oxidative metabolism ; Pathogenesis ; Peroxidation ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Respiration ; Rheumatoid arthritis ; Science ; Signal transduction ; TLR2 protein ; Toll-Like Receptor 2 - metabolism ; Toll-like receptors ; Translocation ; Tumors</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.43165-43165, Article 43165</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</citedby><cites>FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320554/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320554/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28225071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGarry, Trudy</creatorcontrib><creatorcontrib>Biniecka, Monika</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Cluxton, Deborah</creatorcontrib><creatorcontrib>Canavan, Mary</creatorcontrib><creatorcontrib>Wade, Siobhan</creatorcontrib><creatorcontrib>Wade, Sarah</creatorcontrib><creatorcontrib>Gallagher, Lorna</creatorcontrib><creatorcontrib>Orr, Carl</creatorcontrib><creatorcontrib>Veale, Douglas J.</creatorcontrib><creatorcontrib>Fearon, Ursula</creatorcontrib><title>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.</description><subject>13/31</subject><subject>13/95</subject><subject>14/28</subject><subject>14/35</subject><subject>38/77</subject><subject>631/250/2520</subject><subject>631/250/256/2515</subject><subject>631/250/262/2106/2108</subject><subject>631/250/516/1909</subject><subject>82/51</subject><subject>96/2</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Arthritis, Rheumatoid - pathology</subject><subject>Bioenergetics</subject><subject>Cell Respiration</subject><subject>Cells, Cultured</subject><subject>Electron transport</subject><subject>Fibroblasts - pathology</subject><subject>Gene Expression Profiling</subject><subject>Gene regulation</subject><subject>Genes, Mitochondrial</subject><subject>Glycolysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>Lipid Peroxidation</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Nuclear transport</subject><subject>Oxidative metabolism</subject><subject>Pathogenesis</subject><subject>Peroxidation</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiration</subject><subject>Rheumatoid arthritis</subject><subject>Science</subject><subject>Signal transduction</subject><subject>TLR2 protein</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptors</subject><subject>Translocation</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LHDEYhYO0qFgv_AMy4E0rTJtkJjPJTUHEL1goLHodMvnYyTKTjMlE8d83urqsbW4SOM857xsOACcI_kSwor9i0FNdoYbsgUMMa1LiCuMvO-8DcBzjGuZDMKsR2wcHmGJMYIsOwXqpox_SbL0rvCnuF0tcWqeS1KqwzgxiHMWbOPfBp1VfjMLZKQ3iwzHqWXR-sLKYxNw_i5eYfcWy1ykbvVXFRchWO9v4DXw1Yoj6-P0-Ag_XV_eXt-Xiz83d5cWilHVF51I3ghkiDFVEKUZq2ioJWSMJgVAho5tGd23XZaSpWqQZxbXsGtMqLGBTK1Mdgd-b3Cl1o1ZSuzmIgU_BjiK8cC8s_6w42_OVf-KkwpCQOgd8fw8I_jHpOPPRRqmHQTjtU-SItpBRAgnL6Nk_6Nqn4PL3OGIQtRhVhGbqx4aSwcfcl9kugyB_LZFvS8zs6e72W_Kjsgycb4CYJbfSYWfkf2l_AVWmqNM</recordid><startdate>20170222</startdate><enddate>20170222</enddate><creator>McGarry, Trudy</creator><creator>Biniecka, Monika</creator><creator>Gao, Wei</creator><creator>Cluxton, Deborah</creator><creator>Canavan, Mary</creator><creator>Wade, Siobhan</creator><creator>Wade, Sarah</creator><creator>Gallagher, Lorna</creator><creator>Orr, Carl</creator><creator>Veale, Douglas J.</creator><creator>Fearon, Ursula</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170222</creationdate><title>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</title><author>McGarry, Trudy ; Biniecka, Monika ; Gao, Wei ; Cluxton, Deborah ; Canavan, Mary ; Wade, Siobhan ; Wade, Sarah ; Gallagher, Lorna ; Orr, Carl ; Veale, Douglas J. ; Fearon, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e6a9f5af8d5dd95487dc096c5500d1fe66eb7bbf5a6371e9824cb6f7d2a064df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/31</topic><topic>13/95</topic><topic>14/28</topic><topic>14/35</topic><topic>38/77</topic><topic>631/250/2520</topic><topic>631/250/256/2515</topic><topic>631/250/262/2106/2108</topic><topic>631/250/516/1909</topic><topic>82/51</topic><topic>96/2</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Arthritis, Rheumatoid - pathology</topic><topic>Bioenergetics</topic><topic>Cell Respiration</topic><topic>Cells, Cultured</topic><topic>Electron transport</topic><topic>Fibroblasts - pathology</topic><topic>Gene Expression Profiling</topic><topic>Gene regulation</topic><topic>Genes, Mitochondrial</topic><topic>Glycolysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>Lipid Peroxidation</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Nuclear transport</topic><topic>Oxidative metabolism</topic><topic>Pathogenesis</topic><topic>Peroxidation</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiration</topic><topic>Rheumatoid arthritis</topic><topic>Science</topic><topic>Signal transduction</topic><topic>TLR2 protein</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptors</topic><topic>Translocation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGarry, Trudy</creatorcontrib><creatorcontrib>Biniecka, Monika</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Cluxton, Deborah</creatorcontrib><creatorcontrib>Canavan, Mary</creatorcontrib><creatorcontrib>Wade, Siobhan</creatorcontrib><creatorcontrib>Wade, Sarah</creatorcontrib><creatorcontrib>Gallagher, Lorna</creatorcontrib><creatorcontrib>Orr, Carl</creatorcontrib><creatorcontrib>Veale, Douglas J.</creatorcontrib><creatorcontrib>Fearon, Ursula</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGarry, Trudy</au><au>Biniecka, Monika</au><au>Gao, Wei</au><au>Cluxton, Deborah</au><au>Canavan, Mary</au><au>Wade, Siobhan</au><au>Wade, Sarah</au><au>Gallagher, Lorna</au><au>Orr, Carl</au><au>Veale, Douglas J.</au><au>Fearon, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-22</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>43165</spage><epage>43165</epage><pages>43165-43165</pages><artnum>43165</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28225071</pmid><doi>10.1038/srep43165</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-02, Vol.7 (1), p.43165-43165, Article 43165 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5320554 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 13/31 13/95 14/28 14/35 38/77 631/250/2520 631/250/256/2515 631/250/262/2106/2108 631/250/516/1909 82/51 96/2 Adenosine Triphosphate - biosynthesis Arthritis, Rheumatoid - pathology Bioenergetics Cell Respiration Cells, Cultured Electron transport Fibroblasts - pathology Gene Expression Profiling Gene regulation Genes, Mitochondrial Glycolysis Humanities and Social Sciences Humans Inflammation Innate immunity Lipid Peroxidation Membrane potential Membrane Potential, Mitochondrial Metabolic Networks and Pathways Metabolic pathways Metabolism Mitochondria Mitochondria - metabolism multidisciplinary Nuclear transport Oxidative metabolism Pathogenesis Peroxidation Reactive oxygen species Reactive Oxygen Species - metabolism Respiration Rheumatoid arthritis Science Signal transduction TLR2 protein Toll-Like Receptor 2 - metabolism Toll-like receptors Translocation Tumors |
title | Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolution%20of%20TLR2-induced%20inflammation%20through%20manipulation%20of%20metabolic%20pathways%20in%20Rheumatoid%20Arthritis&rft.jtitle=Scientific%20reports&rft.au=McGarry,%20Trudy&rft.date=2017-02-22&rft.volume=7&rft.issue=1&rft.spage=43165&rft.epage=43165&rft.pages=43165-43165&rft.artnum=43165&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep43165&rft_dat=%3Cproquest_pubme%3E1901721358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901721358&rft_id=info:pmid/28225071&rfr_iscdi=true |