Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint

Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemistry and photobiology 2017-01, Vol.93 (1), p.238-244
1. Verfasser: Lindsey‐Boltz, Laura A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 1
container_start_page 238
container_title Photochemistry and photobiology
container_volume 93
creator Lindsey‐Boltz, Laura A.
description Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair‐checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair‐checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF‐ERCC1, XPG, TFIIH, RPA), the 5′‐3′ exonuclease EXO1, and the damage checkpoint proteins ATR‐ATRIP and TopBP1. This coupled repair‐checkpoint system was used to demonstrate that the ~30 nucleotide single‐stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR. Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to UV‐induced genotoxic stress and are important for cancer prevention. This review summarizes the in vitro coupled repair‐checkpoint system developed by Aziz Sancar et al. to analyze the basic steps of these two DNA damage stress responses in a biochemically defined reaction. They demonstrated that the ~30 nucleotide single‐stranded DNA gap generated during the excision repair process by XPA, XPC, XPF‐ERCC1, XPG, TFIIH, and RPA is enlarged by the exonuclease EXO1 and bound by RPA to generate the signal that activates ATR‐ATRIP in the presence of TOPBP1.
doi_str_mv 10.1111/php.12667
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5315623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872818754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-5f5fc5a240c31e52b96b4c072dbd587aa19efc8a012c2c8687409f4a7a4937713</originalsourceid><addsrcrecordid>eNqNkV1LHDEUhkOp1NX2wj9QAr3Ri9GcTL6mF8J211ZBVIq9DtlsZjd2djImM2399812VVQoeAgnF-fh4SQvQntADiHXUbfsDoEKId-gEUgOBZBKvkUjQkoolOB8G-2kdEMIsErCO7RNpRJQKTJCl1-ibxf54LMej5sGX4eF65cufsaTMHTNenLyx_rkQ4u_u874iPuAM4GnF2M8NSuzcHiydPZnF3zbv0dbtWmS-3B_76IfX0-uJ6fF-eW3s8n4vLBMClnwmteWG8qILcFxOqvEjFki6Xw250oaA5WrrTIEqKVWCSUZqWpmpGFVKSWUu-h44-2G2crNrWv7aBrdRb8y8U4H4_XzSeuXehF-aV4CF7TMgv17QQy3g0u9XvlkXdOY1oUhaVCSqtw4ewXKQJFScZrRTy_QmzDENv9EpoSqCChYCw82lI0hpejqx72B6HWiOieq_yWa2Y9PH_pIPkSYgaMN8Ns37u7_Jn11erVR_gWZs6i-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868901814</pqid></control><display><type>article</type><title>Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lindsey‐Boltz, Laura A.</creator><creatorcontrib>Lindsey‐Boltz, Laura A.</creatorcontrib><description>Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair‐checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair‐checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF‐ERCC1, XPG, TFIIH, RPA), the 5′‐3′ exonuclease EXO1, and the damage checkpoint proteins ATR‐ATRIP and TopBP1. This coupled repair‐checkpoint system was used to demonstrate that the ~30 nucleotide single‐stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR. Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to UV‐induced genotoxic stress and are important for cancer prevention. This review summarizes the in vitro coupled repair‐checkpoint system developed by Aziz Sancar et al. to analyze the basic steps of these two DNA damage stress responses in a biochemically defined reaction. They demonstrated that the ~30 nucleotide single‐stranded DNA gap generated during the excision repair process by XPA, XPC, XPF‐ERCC1, XPG, TFIIH, and RPA is enlarged by the exonuclease EXO1 and bound by RPA to generate the signal that activates ATR‐ATRIP in the presence of TOPBP1.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.12667</identifier><identifier>PMID: 27861980</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Deoxyribonucleic acid ; DNA ; DNA damage ; DNA polymerase ; DNA repair ; Photochemistry</subject><ispartof>Photochemistry and photobiology, 2017-01, Vol.93 (1), p.238-244</ispartof><rights>2016 The American Society of Photobiology</rights><rights>2016 The American Society of Photobiology.</rights><rights>2017 American Society for Photobiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-5f5fc5a240c31e52b96b4c072dbd587aa19efc8a012c2c8687409f4a7a4937713</citedby><cites>FETCH-LOGICAL-c4767-5f5fc5a240c31e52b96b4c072dbd587aa19efc8a012c2c8687409f4a7a4937713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fphp.12667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fphp.12667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27861980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindsey‐Boltz, Laura A.</creatorcontrib><title>Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair‐checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair‐checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF‐ERCC1, XPG, TFIIH, RPA), the 5′‐3′ exonuclease EXO1, and the damage checkpoint proteins ATR‐ATRIP and TopBP1. This coupled repair‐checkpoint system was used to demonstrate that the ~30 nucleotide single‐stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR. Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to UV‐induced genotoxic stress and are important for cancer prevention. This review summarizes the in vitro coupled repair‐checkpoint system developed by Aziz Sancar et al. to analyze the basic steps of these two DNA damage stress responses in a biochemically defined reaction. They demonstrated that the ~30 nucleotide single‐stranded DNA gap generated during the excision repair process by XPA, XPC, XPF‐ERCC1, XPG, TFIIH, and RPA is enlarged by the exonuclease EXO1 and bound by RPA to generate the signal that activates ATR‐ATRIP in the presence of TOPBP1.</description><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA polymerase</subject><subject>DNA repair</subject><subject>Photochemistry</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkV1LHDEUhkOp1NX2wj9QAr3Ri9GcTL6mF8J211ZBVIq9DtlsZjd2djImM2399812VVQoeAgnF-fh4SQvQntADiHXUbfsDoEKId-gEUgOBZBKvkUjQkoolOB8G-2kdEMIsErCO7RNpRJQKTJCl1-ibxf54LMej5sGX4eF65cufsaTMHTNenLyx_rkQ4u_u874iPuAM4GnF2M8NSuzcHiydPZnF3zbv0dbtWmS-3B_76IfX0-uJ6fF-eW3s8n4vLBMClnwmteWG8qILcFxOqvEjFki6Xw250oaA5WrrTIEqKVWCSUZqWpmpGFVKSWUu-h44-2G2crNrWv7aBrdRb8y8U4H4_XzSeuXehF-aV4CF7TMgv17QQy3g0u9XvlkXdOY1oUhaVCSqtw4ewXKQJFScZrRTy_QmzDENv9EpoSqCChYCw82lI0hpejqx72B6HWiOieq_yWa2Y9PH_pIPkSYgaMN8Ns37u7_Jn11erVR_gWZs6i-</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Lindsey‐Boltz, Laura A.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201701</creationdate><title>Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint</title><author>Lindsey‐Boltz, Laura A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-5f5fc5a240c31e52b96b4c072dbd587aa19efc8a012c2c8687409f4a7a4937713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA polymerase</topic><topic>DNA repair</topic><topic>Photochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsey‐Boltz, Laura A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsey‐Boltz, Laura A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2017-01</date><risdate>2017</risdate><volume>93</volume><issue>1</issue><spage>238</spage><epage>244</epage><pages>238-244</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair‐checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair‐checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF‐ERCC1, XPG, TFIIH, RPA), the 5′‐3′ exonuclease EXO1, and the damage checkpoint proteins ATR‐ATRIP and TopBP1. This coupled repair‐checkpoint system was used to demonstrate that the ~30 nucleotide single‐stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR. Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to UV‐induced genotoxic stress and are important for cancer prevention. This review summarizes the in vitro coupled repair‐checkpoint system developed by Aziz Sancar et al. to analyze the basic steps of these two DNA damage stress responses in a biochemically defined reaction. They demonstrated that the ~30 nucleotide single‐stranded DNA gap generated during the excision repair process by XPA, XPC, XPF‐ERCC1, XPG, TFIIH, and RPA is enlarged by the exonuclease EXO1 and bound by RPA to generate the signal that activates ATR‐ATRIP in the presence of TOPBP1.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27861980</pmid><doi>10.1111/php.12667</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-8655
ispartof Photochemistry and photobiology, 2017-01, Vol.93 (1), p.238-244
issn 0031-8655
1751-1097
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5315623
source Wiley Online Library Journals Frontfile Complete
subjects Deoxyribonucleic acid
DNA
DNA damage
DNA polymerase
DNA repair
Photochemistry
title Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bringing%20It%20All%20Together:%20Coupling%20Excision%20Repair%20to%20the%20DNA%20Damage%20Checkpoint&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Lindsey%E2%80%90Boltz,%20Laura%20A.&rft.date=2017-01&rft.volume=93&rft.issue=1&rft.spage=238&rft.epage=244&rft.pages=238-244&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1111/php.12667&rft_dat=%3Cproquest_pubme%3E1872818754%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868901814&rft_id=info:pmid/27861980&rfr_iscdi=true