DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p
The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2017-01, Vol.45 (2), p.951-967 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 967 |
---|---|
container_issue | 2 |
container_start_page | 951 |
container_title | Nucleic acids research |
container_volume | 45 |
creator | Chakraborty, Arka Lyonnais, Sébastien Battistini, Federica Hospital, Adam Medici, Giorgio Prohens, Rafel Orozco, Modesto Vilardell, Josep Solà, Maria |
description | The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction. |
doi_str_mv | 10.1093/nar/gkw1147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5314765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845248002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-eb13264287c3bcb525cae83d8a2585104df3a4e3bca98cfdd6db387914ef5573</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtRCILm1PvSMfkapQfybOpdKq5Uuq4FLOluNMsqaJndoOiH-Pl25XcBiNRu_Nm4-H0AUl7ylp-ZU38Wp8-EWpaF6gDeU1q0Rbs5doQziRFSVCnaA3Kf0ghAoqxWt0whrVtrXgG_T99usWpxxXm9cIuHcRbE54CcllF7zzIw4DzjvAs8vB7oLvozMTHsGHGfBi7IMZ96wlhgzO4203sOUMvRrMlOD8kE_R_ccP9zefq7tvn77cbO8qK1SbK-goZ7VgqrG8s51k0hpQvFeGSSXL4v3AjYCCmVbZoe_rvuOqaamAQcqGn6LrJ9ll7WboLfgczaSX6GYTf-tgnP4f8W6nx_BTS16eVcsiQJ8EbFqtLqdDtCb_bTwW-2CkYZq15W37nneHoTE8rpCynl2yME3GQ1iTpkpIJhQhrFAvD_IxpBRhOK5Gid57p4t3-uBdYb_995oj99ks_geH9pg1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845248002</pqid></control><display><type>article</type><title>DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>Recercat</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chakraborty, Arka ; Lyonnais, Sébastien ; Battistini, Federica ; Hospital, Adam ; Medici, Giorgio ; Prohens, Rafel ; Orozco, Modesto ; Vilardell, Josep ; Solà, Maria</creator><creatorcontrib>Chakraborty, Arka ; Lyonnais, Sébastien ; Battistini, Federica ; Hospital, Adam ; Medici, Giorgio ; Prohens, Rafel ; Orozco, Modesto ; Vilardell, Josep ; Solà, Maria</creatorcontrib><description>The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkw1147</identifier><identifier>PMID: 27899643</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenina ; Adenine ; ADN mitocondrial ; Base Sequence ; DNA, Mitochondrial - chemistry ; DNA, Mitochondrial - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Genome, Mitochondrial ; Genomes ; Mitochondrial DNA ; Molecular Conformation ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Poly A ; Protein Binding ; Protein Interaction Domains and Motifs ; Replication Origin ; Structural Biology ; Thermodynamics</subject><ispartof>Nucleic acids research, 2017-01, Vol.45 (2), p.951-967</ispartof><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>cc-by-nc (c) Chakraborty et al., 2016 info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc/3.0/es">http://creativecommons.org/licenses/by-nc/3.0/es</a></rights><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-eb13264287c3bcb525cae83d8a2585104df3a4e3bca98cfdd6db387914ef5573</citedby><cites>FETCH-LOGICAL-c489t-eb13264287c3bcb525cae83d8a2585104df3a4e3bca98cfdd6db387914ef5573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314765/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314765/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,26974,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27899643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Arka</creatorcontrib><creatorcontrib>Lyonnais, Sébastien</creatorcontrib><creatorcontrib>Battistini, Federica</creatorcontrib><creatorcontrib>Hospital, Adam</creatorcontrib><creatorcontrib>Medici, Giorgio</creatorcontrib><creatorcontrib>Prohens, Rafel</creatorcontrib><creatorcontrib>Orozco, Modesto</creatorcontrib><creatorcontrib>Vilardell, Josep</creatorcontrib><creatorcontrib>Solà, Maria</creatorcontrib><title>DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.</description><subject>Adenina</subject><subject>Adenine</subject><subject>ADN mitocondrial</subject><subject>Base Sequence</subject><subject>DNA, Mitochondrial - chemistry</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genome, Mitochondrial</subject><subject>Genomes</subject><subject>Mitochondrial DNA</subject><subject>Molecular Conformation</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Poly A</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Replication Origin</subject><subject>Structural Biology</subject><subject>Thermodynamics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNpVUU1v1DAQtRCILm1PvSMfkapQfybOpdKq5Uuq4FLOluNMsqaJndoOiH-Pl25XcBiNRu_Nm4-H0AUl7ylp-ZU38Wp8-EWpaF6gDeU1q0Rbs5doQziRFSVCnaA3Kf0ghAoqxWt0whrVtrXgG_T99usWpxxXm9cIuHcRbE54CcllF7zzIw4DzjvAs8vB7oLvozMTHsGHGfBi7IMZ96wlhgzO4203sOUMvRrMlOD8kE_R_ccP9zefq7tvn77cbO8qK1SbK-goZ7VgqrG8s51k0hpQvFeGSSXL4v3AjYCCmVbZoe_rvuOqaamAQcqGn6LrJ9ll7WboLfgczaSX6GYTf-tgnP4f8W6nx_BTS16eVcsiQJ8EbFqtLqdDtCb_bTwW-2CkYZq15W37nneHoTE8rpCynl2yME3GQ1iTpkpIJhQhrFAvD_IxpBRhOK5Gid57p4t3-uBdYb_995oj99ks_geH9pg1</recordid><startdate>20170125</startdate><enddate>20170125</enddate><creator>Chakraborty, Arka</creator><creator>Lyonnais, Sébastien</creator><creator>Battistini, Federica</creator><creator>Hospital, Adam</creator><creator>Medici, Giorgio</creator><creator>Prohens, Rafel</creator><creator>Orozco, Modesto</creator><creator>Vilardell, Josep</creator><creator>Solà, Maria</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20170125</creationdate><title>DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p</title><author>Chakraborty, Arka ; Lyonnais, Sébastien ; Battistini, Federica ; Hospital, Adam ; Medici, Giorgio ; Prohens, Rafel ; Orozco, Modesto ; Vilardell, Josep ; Solà, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-eb13264287c3bcb525cae83d8a2585104df3a4e3bca98cfdd6db387914ef5573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenina</topic><topic>Adenine</topic><topic>ADN mitocondrial</topic><topic>Base Sequence</topic><topic>DNA, Mitochondrial - chemistry</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genome, Mitochondrial</topic><topic>Genomes</topic><topic>Mitochondrial DNA</topic><topic>Molecular Conformation</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Poly A</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Replication Origin</topic><topic>Structural Biology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Arka</creatorcontrib><creatorcontrib>Lyonnais, Sébastien</creatorcontrib><creatorcontrib>Battistini, Federica</creatorcontrib><creatorcontrib>Hospital, Adam</creatorcontrib><creatorcontrib>Medici, Giorgio</creatorcontrib><creatorcontrib>Prohens, Rafel</creatorcontrib><creatorcontrib>Orozco, Modesto</creatorcontrib><creatorcontrib>Vilardell, Josep</creatorcontrib><creatorcontrib>Solà, Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Arka</au><au>Lyonnais, Sébastien</au><au>Battistini, Federica</au><au>Hospital, Adam</au><au>Medici, Giorgio</au><au>Prohens, Rafel</au><au>Orozco, Modesto</au><au>Vilardell, Josep</au><au>Solà, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2017-01-25</date><risdate>2017</risdate><volume>45</volume><issue>2</issue><spage>951</spage><epage>967</epage><pages>951-967</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27899643</pmid><doi>10.1093/nar/gkw1147</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2017-01, Vol.45 (2), p.951-967 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5314765 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; Recercat; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenina Adenine ADN mitocondrial Base Sequence DNA, Mitochondrial - chemistry DNA, Mitochondrial - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Genome, Mitochondrial Genomes Mitochondrial DNA Molecular Conformation Molecular Docking Simulation Molecular Dynamics Simulation Nucleic Acid Conformation Poly A Protein Binding Protein Interaction Domains and Motifs Replication Origin Structural Biology Thermodynamics |
title | DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20structure%20directs%20positioning%20of%20the%20mitochondrial%20genome%20packaging%20protein%20Abf2p&rft.jtitle=Nucleic%20acids%20research&rft.au=Chakraborty,%20Arka&rft.date=2017-01-25&rft.volume=45&rft.issue=2&rft.spage=951&rft.epage=967&rft.pages=951-967&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkw1147&rft_dat=%3Cproquest_pubme%3E1845248002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845248002&rft_id=info:pmid/27899643&rfr_iscdi=true |