Highly Coarse-Grained Representations of Transmembrane Proteins

Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2017-02, Vol.13 (2), p.935-944
Hauptverfasser: Madsen, Jesper J, Sinitskiy, Anton V, Li, Jianing, Voth, Gregory A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 944
container_issue 2
container_start_page 935
container_title Journal of chemical theory and computation
container_volume 13
creator Madsen, Jesper J
Sinitskiy, Anton V
Li, Jianing
Voth, Gregory A
description Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3–30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies.
doi_str_mv 10.1021/acs.jctc.6b01076
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893910417</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-66b96d4b7cd74ea79bfa2fb01192f23ea93282aad7f5eb153cf8f99f05d13b373</originalsourceid><addsrcrecordid>eNqNUU1LAzEUDKLY-nH3JHv04NZ8bXZzUaRoKxQUqeeQ7CZtyu6mJluh_97U1qIHwdN78GaGmTcAXCA4QBCjG1mGwaLsygFTEMGcHYA-yihPOcPscL-jogdOQlhASAjF5Bj0cAEpQRj3wd3Yzub1Ohk66YNOR17aVlfJq156HXTbyc66NiTOJFMv29DoRsWpkxfvOm3bcAaOjKyDPt_NU_D2-DAdjtPJ8-hpeD9JJWWsSxlTnFVU5WWVUy1zrozEJppGHBtMtOQEF1jKKjeZVigjpSkM5wZmFSKK5OQU3G51lyvV6KqM1rysxdLbRvq1cNKK35fWzsXMfYgs5iwoigJXOwHv3lc6dKKxodR1HdO4VRCo4IQjSFH-D2iWQUYZ3UDhFlp6F4LXZu8IQbGpSMSKxKYisasoUi5_JtkTvjuJgOst4IvqVr6Nj_1b7xOPRp50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855064647</pqid></control><display><type>article</type><title>Highly Coarse-Grained Representations of Transmembrane Proteins</title><source>MEDLINE</source><source>ACS Publications</source><creator>Madsen, Jesper J ; Sinitskiy, Anton V ; Li, Jianing ; Voth, Gregory A</creator><creatorcontrib>Madsen, Jesper J ; Sinitskiy, Anton V ; Li, Jianing ; Voth, Gregory A</creatorcontrib><description>Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3–30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b01076</identifier><identifier>PMID: 28043122</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adhesion ; Amino acids ; Biomolecules ; Isomerism ; Mapping ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Molecular Dynamics Simulation ; Mutation ; Partitioning ; Protein Conformation ; Proteins ; Residues ; Static Electricity ; Symmetry ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2017-02, Vol.13 (2), p.935-944</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-66b96d4b7cd74ea79bfa2fb01192f23ea93282aad7f5eb153cf8f99f05d13b373</citedby><cites>FETCH-LOGICAL-a466t-66b96d4b7cd74ea79bfa2fb01192f23ea93282aad7f5eb153cf8f99f05d13b373</cites><orcidid>0000-0003-1411-9080 ; 0000-0002-0143-8894 ; 0000-0002-3267-6748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b01076$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b01076$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28043122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madsen, Jesper J</creatorcontrib><creatorcontrib>Sinitskiy, Anton V</creatorcontrib><creatorcontrib>Li, Jianing</creatorcontrib><creatorcontrib>Voth, Gregory A</creatorcontrib><title>Highly Coarse-Grained Representations of Transmembrane Proteins</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3–30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies.</description><subject>Adhesion</subject><subject>Amino acids</subject><subject>Biomolecules</subject><subject>Isomerism</subject><subject>Mapping</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Partitioning</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Residues</subject><subject>Static Electricity</subject><subject>Symmetry</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1LAzEUDKLY-nH3JHv04NZ8bXZzUaRoKxQUqeeQ7CZtyu6mJluh_97U1qIHwdN78GaGmTcAXCA4QBCjG1mGwaLsygFTEMGcHYA-yihPOcPscL-jogdOQlhASAjF5Bj0cAEpQRj3wd3Yzub1Ohk66YNOR17aVlfJq156HXTbyc66NiTOJFMv29DoRsWpkxfvOm3bcAaOjKyDPt_NU_D2-DAdjtPJ8-hpeD9JJWWsSxlTnFVU5WWVUy1zrozEJppGHBtMtOQEF1jKKjeZVigjpSkM5wZmFSKK5OQU3G51lyvV6KqM1rysxdLbRvq1cNKK35fWzsXMfYgs5iwoigJXOwHv3lc6dKKxodR1HdO4VRCo4IQjSFH-D2iWQUYZ3UDhFlp6F4LXZu8IQbGpSMSKxKYisasoUi5_JtkTvjuJgOst4IvqVr6Nj_1b7xOPRp50</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Madsen, Jesper J</creator><creator>Sinitskiy, Anton V</creator><creator>Li, Jianing</creator><creator>Voth, Gregory A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1411-9080</orcidid><orcidid>https://orcid.org/0000-0002-0143-8894</orcidid><orcidid>https://orcid.org/0000-0002-3267-6748</orcidid></search><sort><creationdate>20170214</creationdate><title>Highly Coarse-Grained Representations of Transmembrane Proteins</title><author>Madsen, Jesper J ; Sinitskiy, Anton V ; Li, Jianing ; Voth, Gregory A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-66b96d4b7cd74ea79bfa2fb01192f23ea93282aad7f5eb153cf8f99f05d13b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Amino acids</topic><topic>Biomolecules</topic><topic>Isomerism</topic><topic>Mapping</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Partitioning</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Residues</topic><topic>Static Electricity</topic><topic>Symmetry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madsen, Jesper J</creatorcontrib><creatorcontrib>Sinitskiy, Anton V</creatorcontrib><creatorcontrib>Li, Jianing</creatorcontrib><creatorcontrib>Voth, Gregory A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madsen, Jesper J</au><au>Sinitskiy, Anton V</au><au>Li, Jianing</au><au>Voth, Gregory A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Coarse-Grained Representations of Transmembrane Proteins</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>13</volume><issue>2</issue><spage>935</spage><epage>944</epage><pages>935-944</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3–30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28043122</pmid><doi>10.1021/acs.jctc.6b01076</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1411-9080</orcidid><orcidid>https://orcid.org/0000-0002-0143-8894</orcidid><orcidid>https://orcid.org/0000-0002-3267-6748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2017-02, Vol.13 (2), p.935-944
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312841
source MEDLINE; ACS Publications
subjects Adhesion
Amino acids
Biomolecules
Isomerism
Mapping
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Molecular Dynamics Simulation
Mutation
Partitioning
Protein Conformation
Proteins
Residues
Static Electricity
Symmetry
Thermodynamics
title Highly Coarse-Grained Representations of Transmembrane Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Coarse-Grained%20Representations%20of%20Transmembrane%20Proteins&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Madsen,%20Jesper%20J&rft.date=2017-02-14&rft.volume=13&rft.issue=2&rft.spage=935&rft.epage=944&rft.pages=935-944&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b01076&rft_dat=%3Cproquest_pubme%3E1893910417%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855064647&rft_id=info:pmid/28043122&rfr_iscdi=true