Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics
The backbone dihedral parameters of the Amber RNA force field were improved by fitting using multiple linear regression to potential energies determined by quantum chemistry calculations. Five backbone and four glycosidic dihedral parameters were fit simultaneously to reproduce the potential energie...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2017-02, Vol.13 (2), p.900-915 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 915 |
---|---|
container_issue | 2 |
container_start_page | 900 |
container_title | Journal of chemical theory and computation |
container_volume | 13 |
creator | Aytenfisu, Asaminew H Spasic, Aleksandar Grossfield, Alan Stern, Harry A Mathews, David H |
description | The backbone dihedral parameters of the Amber RNA force field were improved by fitting using multiple linear regression to potential energies determined by quantum chemistry calculations. Five backbone and four glycosidic dihedral parameters were fit simultaneously to reproduce the potential energies determined by a high-level density functional theory calculation (B97D3 functional with the AUG-CC-PVTZ basis set). Umbrella sampling was used to determine conformational free energies along the dihedral angles, and these better agree with the population of conformations observed in the protein data bank for the new parameters than for the conventional parameters. Molecular dynamics simulations performed on a set of hairpin loops, duplexes and tetramers with the new parameter set show improved modeling for the structures of tetramers CCCC, CAAU, and GACC, and an RNA internal loop of noncanonical pairs, as compared to the conventional parameters. For the tetramers, the new parameters largely avoid the incorrect intercalated structures that dominate the conformational samples from the conventional parameters. For the internal loop, the major conformation solved by NMR is stable with the new parameters, but not with the conventional parameters. The new force field performs similarly to the conventional parameters for the UUCG and GCAA hairpin loops and the [U(UA)6A]2 duplex. |
doi_str_mv | 10.1021/acs.jctc.6b00870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855332236</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-aae8b66a9f133426cd41682bf7db5e52e4fed4467a31d8ab1a2b3b9d22e210bc3</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVJaR7tvqugZRexo8eMrNkEjFMnhjQppoXuxJV0p54wM3KkGUP-fcexY9JFVldwzzk60kfIV87GnAl-CS6NH13nxsoypifsAznheVaMCiXU0eHM9TE5TemRMSkzIT-RY6FZpgtZnJA_S9xUCT1d3k_pdbVCH6GmPyFCgx3GRMsQabdCOm0sRjoP0SGdV1h7umjWMWzwxfkj1Oj6GiK9fm6hqVz6TD6WUCf8sp9n5Pf8-6_Z7eju4WYxm96NIJOyGwGgtkpBUfJtOeV8xpUWtpx4m2MuMCvRZ5magOReg-UgrLSFFwIFZ9bJM3K1y133tkHvsO2GF5h1rBqIzyZAZf7ftNXK_A0bk0suVKGHgG_7gBieekydaarksK6hxdAnw3WeSymEVIOU7aQuhpQilodrODNbIGYAYrZAzB7IYDl_W-9geCUwCC52ghdr6GM7_Nb7ef8Aw56YRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855332236</pqid></control><display><type>article</type><title>Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Aytenfisu, Asaminew H ; Spasic, Aleksandar ; Grossfield, Alan ; Stern, Harry A ; Mathews, David H</creator><creatorcontrib>Aytenfisu, Asaminew H ; Spasic, Aleksandar ; Grossfield, Alan ; Stern, Harry A ; Mathews, David H</creatorcontrib><description>The backbone dihedral parameters of the Amber RNA force field were improved by fitting using multiple linear regression to potential energies determined by quantum chemistry calculations. Five backbone and four glycosidic dihedral parameters were fit simultaneously to reproduce the potential energies determined by a high-level density functional theory calculation (B97D3 functional with the AUG-CC-PVTZ basis set). Umbrella sampling was used to determine conformational free energies along the dihedral angles, and these better agree with the population of conformations observed in the protein data bank for the new parameters than for the conventional parameters. Molecular dynamics simulations performed on a set of hairpin loops, duplexes and tetramers with the new parameter set show improved modeling for the structures of tetramers CCCC, CAAU, and GACC, and an RNA internal loop of noncanonical pairs, as compared to the conventional parameters. For the tetramers, the new parameters largely avoid the incorrect intercalated structures that dominate the conformational samples from the conventional parameters. For the internal loop, the major conformation solved by NMR is stable with the new parameters, but not with the conventional parameters. The new force field performs similarly to the conventional parameters for the UUCG and GCAA hairpin loops and the [U(UA)6A]2 duplex.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00870</identifier><identifier>PMID: 28048939</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Sequence ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; RNA - chemistry ; RNA - genetics ; RNA - metabolism ; Software ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2017-02, Vol.13 (2), p.900-915</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-aae8b66a9f133426cd41682bf7db5e52e4fed4467a31d8ab1a2b3b9d22e210bc3</citedby><cites>FETCH-LOGICAL-a433t-aae8b66a9f133426cd41682bf7db5e52e4fed4467a31d8ab1a2b3b9d22e210bc3</cites><orcidid>0000-0002-2907-6557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00870$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00870$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28048939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aytenfisu, Asaminew H</creatorcontrib><creatorcontrib>Spasic, Aleksandar</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><creatorcontrib>Stern, Harry A</creatorcontrib><creatorcontrib>Mathews, David H</creatorcontrib><title>Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The backbone dihedral parameters of the Amber RNA force field were improved by fitting using multiple linear regression to potential energies determined by quantum chemistry calculations. Five backbone and four glycosidic dihedral parameters were fit simultaneously to reproduce the potential energies determined by a high-level density functional theory calculation (B97D3 functional with the AUG-CC-PVTZ basis set). Umbrella sampling was used to determine conformational free energies along the dihedral angles, and these better agree with the population of conformations observed in the protein data bank for the new parameters than for the conventional parameters. Molecular dynamics simulations performed on a set of hairpin loops, duplexes and tetramers with the new parameter set show improved modeling for the structures of tetramers CCCC, CAAU, and GACC, and an RNA internal loop of noncanonical pairs, as compared to the conventional parameters. For the tetramers, the new parameters largely avoid the incorrect intercalated structures that dominate the conformational samples from the conventional parameters. For the internal loop, the major conformation solved by NMR is stable with the new parameters, but not with the conventional parameters. The new force field performs similarly to the conventional parameters for the UUCG and GCAA hairpin loops and the [U(UA)6A]2 duplex.</description><subject>Base Sequence</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>Software</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtrGzEUhUVJaR7tvqugZRexo8eMrNkEjFMnhjQppoXuxJV0p54wM3KkGUP-fcexY9JFVldwzzk60kfIV87GnAl-CS6NH13nxsoypifsAznheVaMCiXU0eHM9TE5TemRMSkzIT-RY6FZpgtZnJA_S9xUCT1d3k_pdbVCH6GmPyFCgx3GRMsQabdCOm0sRjoP0SGdV1h7umjWMWzwxfkj1Oj6GiK9fm6hqVz6TD6WUCf8sp9n5Pf8-6_Z7eju4WYxm96NIJOyGwGgtkpBUfJtOeV8xpUWtpx4m2MuMCvRZ5magOReg-UgrLSFFwIFZ9bJM3K1y133tkHvsO2GF5h1rBqIzyZAZf7ftNXK_A0bk0suVKGHgG_7gBieekydaarksK6hxdAnw3WeSymEVIOU7aQuhpQilodrODNbIGYAYrZAzB7IYDl_W-9geCUwCC52ghdr6GM7_Nb7ef8Aw56YRA</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Aytenfisu, Asaminew H</creator><creator>Spasic, Aleksandar</creator><creator>Grossfield, Alan</creator><creator>Stern, Harry A</creator><creator>Mathews, David H</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2907-6557</orcidid></search><sort><creationdate>20170214</creationdate><title>Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics</title><author>Aytenfisu, Asaminew H ; Spasic, Aleksandar ; Grossfield, Alan ; Stern, Harry A ; Mathews, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-aae8b66a9f133426cd41682bf7db5e52e4fed4467a31d8ab1a2b3b9d22e210bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Base Sequence</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>Software</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aytenfisu, Asaminew H</creatorcontrib><creatorcontrib>Spasic, Aleksandar</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><creatorcontrib>Stern, Harry A</creatorcontrib><creatorcontrib>Mathews, David H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aytenfisu, Asaminew H</au><au>Spasic, Aleksandar</au><au>Grossfield, Alan</au><au>Stern, Harry A</au><au>Mathews, David H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>13</volume><issue>2</issue><spage>900</spage><epage>915</epage><pages>900-915</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The backbone dihedral parameters of the Amber RNA force field were improved by fitting using multiple linear regression to potential energies determined by quantum chemistry calculations. Five backbone and four glycosidic dihedral parameters were fit simultaneously to reproduce the potential energies determined by a high-level density functional theory calculation (B97D3 functional with the AUG-CC-PVTZ basis set). Umbrella sampling was used to determine conformational free energies along the dihedral angles, and these better agree with the population of conformations observed in the protein data bank for the new parameters than for the conventional parameters. Molecular dynamics simulations performed on a set of hairpin loops, duplexes and tetramers with the new parameter set show improved modeling for the structures of tetramers CCCC, CAAU, and GACC, and an RNA internal loop of noncanonical pairs, as compared to the conventional parameters. For the tetramers, the new parameters largely avoid the incorrect intercalated structures that dominate the conformational samples from the conventional parameters. For the internal loop, the major conformation solved by NMR is stable with the new parameters, but not with the conventional parameters. The new force field performs similarly to the conventional parameters for the UUCG and GCAA hairpin loops and the [U(UA)6A]2 duplex.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28048939</pmid><doi>10.1021/acs.jctc.6b00870</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2907-6557</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2017-02, Vol.13 (2), p.900-915 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312698 |
source | MEDLINE; ACS Publications |
subjects | Base Sequence Molecular Dynamics Simulation Nucleic Acid Conformation RNA - chemistry RNA - genetics RNA - metabolism Software Thermodynamics |
title | Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revised%20RNA%20Dihedral%20Parameters%20for%20the%20Amber%20Force%20Field%20Improve%20RNA%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Aytenfisu,%20Asaminew%20H&rft.date=2017-02-14&rft.volume=13&rft.issue=2&rft.spage=900&rft.epage=915&rft.pages=900-915&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00870&rft_dat=%3Cproquest_pubme%3E1855332236%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855332236&rft_id=info:pmid/28048939&rfr_iscdi=true |