Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps
Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing...
Gespeichert in:
Veröffentlicht in: | Oncotarget 2016-09, Vol.7 (37), p.59189-59198 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59198 |
---|---|
container_issue | 37 |
container_start_page | 59189 |
container_title | Oncotarget |
container_volume | 7 |
creator | Zheng, Hong Ji, Jiansong Zhao, Liangcai Chen, Minjiang Shi, An Pan, Linlin Huang, Yiran Zhang, Huajie Dong, Baijun Gao, Hongchang |
description | Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery. |
doi_str_mv | 10.18632/oncotarget.10830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826733252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</originalsourceid><addsrcrecordid>eNpVkU9PFjEQxhujEYJ8AC-kRy-L_fu-3QsJISIkJHjQczNtZ9eabfvS7pro1S_u8oKAc5hpMs_8OpmHkPecnXKzkeJjyb7MUEecTzkzkr0ih7xXfSe0lq9fvA_IcWs_2BpabY3o35IDsVUbyQQ7JH--VAzRz7FkCjnQEGHMpcVGy0ArZpiox2lNUH3MJQFdWswjzYufECpNqxzn6FdtKxmyx85Bw0Ab1iXRhDO4MpUUfdvzG05DV-oIOf6-5yTYtXfkzQBTw-PHekS-XX76enHV3dx-vr44v-m8EmLuBi29Cb10mjEzOMHYAKhhMH0wQStleqUYd8DdFoJ2PZhgIGyMYmAYF04ekbMH7m5xCYPHPFeY7K7GBPWXLRDt_50cv9ux_LRaciGZWgEfHgG13C3YZptiuz8PZCxLs9yIzVZKocUq5Q9SX0trFYenbzize__ss3927986c_Jyv6eJf27Jvy2DnYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826733252</pqid></control><display><type>article</type><title>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</title><source>Freely Accessible Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zheng, Hong ; Ji, Jiansong ; Zhao, Liangcai ; Chen, Minjiang ; Shi, An ; Pan, Linlin ; Huang, Yiran ; Zhang, Huajie ; Dong, Baijun ; Gao, Hongchang</creator><creatorcontrib>Zheng, Hong ; Ji, Jiansong ; Zhao, Liangcai ; Chen, Minjiang ; Shi, An ; Pan, Linlin ; Huang, Yiran ; Zhang, Huajie ; Dong, Baijun ; Gao, Hongchang</creatorcontrib><description>Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.10830</identifier><identifier>PMID: 27463020</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Adult ; Aged ; Biomarkers, Tumor - blood ; Carcinoma, Renal Cell - diagnosis ; Carcinoma, Renal Cell - surgery ; Cohort Studies ; Computer Simulation ; Early Diagnosis ; Female ; Follow-Up Studies ; Humans ; Kidney Neoplasms - diagnosis ; Kidney Neoplasms - surgery ; Magnetic Resonance Spectroscopy ; Male ; Metabolomics ; Middle Aged ; Neoplasm Metastasis ; Nephrectomy ; Predictive Value of Tests ; Prognosis ; Research Paper ; Treatment Outcome</subject><ispartof>Oncotarget, 2016-09, Vol.7 (37), p.59189-59198</ispartof><rights>Copyright: © 2016 Zheng et al. 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</citedby><cites>FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27463020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Ji, Jiansong</creatorcontrib><creatorcontrib>Zhao, Liangcai</creatorcontrib><creatorcontrib>Chen, Minjiang</creatorcontrib><creatorcontrib>Shi, An</creatorcontrib><creatorcontrib>Pan, Linlin</creatorcontrib><creatorcontrib>Huang, Yiran</creatorcontrib><creatorcontrib>Zhang, Huajie</creatorcontrib><creatorcontrib>Dong, Baijun</creatorcontrib><creatorcontrib>Gao, Hongchang</creatorcontrib><title>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.</description><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers, Tumor - blood</subject><subject>Carcinoma, Renal Cell - diagnosis</subject><subject>Carcinoma, Renal Cell - surgery</subject><subject>Cohort Studies</subject><subject>Computer Simulation</subject><subject>Early Diagnosis</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Humans</subject><subject>Kidney Neoplasms - diagnosis</subject><subject>Kidney Neoplasms - surgery</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Metabolomics</subject><subject>Middle Aged</subject><subject>Neoplasm Metastasis</subject><subject>Nephrectomy</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Research Paper</subject><subject>Treatment Outcome</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9PFjEQxhujEYJ8AC-kRy-L_fu-3QsJISIkJHjQczNtZ9eabfvS7pro1S_u8oKAc5hpMs_8OpmHkPecnXKzkeJjyb7MUEecTzkzkr0ih7xXfSe0lq9fvA_IcWs_2BpabY3o35IDsVUbyQQ7JH--VAzRz7FkCjnQEGHMpcVGy0ArZpiox2lNUH3MJQFdWswjzYufECpNqxzn6FdtKxmyx85Bw0Ab1iXRhDO4MpUUfdvzG05DV-oIOf6-5yTYtXfkzQBTw-PHekS-XX76enHV3dx-vr44v-m8EmLuBi29Cb10mjEzOMHYAKhhMH0wQStleqUYd8DdFoJ2PZhgIGyMYmAYF04ekbMH7m5xCYPHPFeY7K7GBPWXLRDt_50cv9ux_LRaciGZWgEfHgG13C3YZptiuz8PZCxLs9yIzVZKocUq5Q9SX0trFYenbzize__ss3927986c_Jyv6eJf27Jvy2DnYw</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Zheng, Hong</creator><creator>Ji, Jiansong</creator><creator>Zhao, Liangcai</creator><creator>Chen, Minjiang</creator><creator>Shi, An</creator><creator>Pan, Linlin</creator><creator>Huang, Yiran</creator><creator>Zhang, Huajie</creator><creator>Dong, Baijun</creator><creator>Gao, Hongchang</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160913</creationdate><title>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</title><author>Zheng, Hong ; Ji, Jiansong ; Zhao, Liangcai ; Chen, Minjiang ; Shi, An ; Pan, Linlin ; Huang, Yiran ; Zhang, Huajie ; Dong, Baijun ; Gao, Hongchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers, Tumor - blood</topic><topic>Carcinoma, Renal Cell - diagnosis</topic><topic>Carcinoma, Renal Cell - surgery</topic><topic>Cohort Studies</topic><topic>Computer Simulation</topic><topic>Early Diagnosis</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Humans</topic><topic>Kidney Neoplasms - diagnosis</topic><topic>Kidney Neoplasms - surgery</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Metabolomics</topic><topic>Middle Aged</topic><topic>Neoplasm Metastasis</topic><topic>Nephrectomy</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Research Paper</topic><topic>Treatment Outcome</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Ji, Jiansong</creatorcontrib><creatorcontrib>Zhao, Liangcai</creatorcontrib><creatorcontrib>Chen, Minjiang</creatorcontrib><creatorcontrib>Shi, An</creatorcontrib><creatorcontrib>Pan, Linlin</creatorcontrib><creatorcontrib>Huang, Yiran</creatorcontrib><creatorcontrib>Zhang, Huajie</creatorcontrib><creatorcontrib>Dong, Baijun</creatorcontrib><creatorcontrib>Gao, Hongchang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hong</au><au>Ji, Jiansong</au><au>Zhao, Liangcai</au><au>Chen, Minjiang</au><au>Shi, An</au><au>Pan, Linlin</au><au>Huang, Yiran</au><au>Zhang, Huajie</au><au>Dong, Baijun</au><au>Gao, Hongchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>7</volume><issue>37</issue><spage>59189</spage><epage>59198</epage><pages>59189-59198</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>27463020</pmid><doi>10.18632/oncotarget.10830</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-2553 |
ispartof | Oncotarget, 2016-09, Vol.7 (37), p.59189-59198 |
issn | 1949-2553 1949-2553 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312304 |
source | Freely Accessible Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Adult Aged Biomarkers, Tumor - blood Carcinoma, Renal Cell - diagnosis Carcinoma, Renal Cell - surgery Cohort Studies Computer Simulation Early Diagnosis Female Follow-Up Studies Humans Kidney Neoplasms - diagnosis Kidney Neoplasms - surgery Magnetic Resonance Spectroscopy Male Metabolomics Middle Aged Neoplasm Metastasis Nephrectomy Predictive Value of Tests Prognosis Research Paper Treatment Outcome |
title | Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20diagnosis%20of%20renal%20cell%20carcinoma%20using%20nuclear%20magnetic%20resonance-based%20serum%20metabolomics%20and%20self-organizing%20maps&rft.jtitle=Oncotarget&rft.au=Zheng,%20Hong&rft.date=2016-09-13&rft.volume=7&rft.issue=37&rft.spage=59189&rft.epage=59198&rft.pages=59189-59198&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.10830&rft_dat=%3Cproquest_pubme%3E1826733252%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826733252&rft_id=info:pmid/27463020&rfr_iscdi=true |