Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps

Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2016-09, Vol.7 (37), p.59189-59198
Hauptverfasser: Zheng, Hong, Ji, Jiansong, Zhao, Liangcai, Chen, Minjiang, Shi, An, Pan, Linlin, Huang, Yiran, Zhang, Huajie, Dong, Baijun, Gao, Hongchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59198
container_issue 37
container_start_page 59189
container_title Oncotarget
container_volume 7
creator Zheng, Hong
Ji, Jiansong
Zhao, Liangcai
Chen, Minjiang
Shi, An
Pan, Linlin
Huang, Yiran
Zhang, Huajie
Dong, Baijun
Gao, Hongchang
description Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.
doi_str_mv 10.18632/oncotarget.10830
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826733252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</originalsourceid><addsrcrecordid>eNpVkU9PFjEQxhujEYJ8AC-kRy-L_fu-3QsJISIkJHjQczNtZ9eabfvS7pro1S_u8oKAc5hpMs_8OpmHkPecnXKzkeJjyb7MUEecTzkzkr0ih7xXfSe0lq9fvA_IcWs_2BpabY3o35IDsVUbyQQ7JH--VAzRz7FkCjnQEGHMpcVGy0ArZpiox2lNUH3MJQFdWswjzYufECpNqxzn6FdtKxmyx85Bw0Ab1iXRhDO4MpUUfdvzG05DV-oIOf6-5yTYtXfkzQBTw-PHekS-XX76enHV3dx-vr44v-m8EmLuBi29Cb10mjEzOMHYAKhhMH0wQStleqUYd8DdFoJ2PZhgIGyMYmAYF04ekbMH7m5xCYPHPFeY7K7GBPWXLRDt_50cv9ux_LRaciGZWgEfHgG13C3YZptiuz8PZCxLs9yIzVZKocUq5Q9SX0trFYenbzize__ss3927986c_Jyv6eJf27Jvy2DnYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826733252</pqid></control><display><type>article</type><title>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</title><source>Freely Accessible Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zheng, Hong ; Ji, Jiansong ; Zhao, Liangcai ; Chen, Minjiang ; Shi, An ; Pan, Linlin ; Huang, Yiran ; Zhang, Huajie ; Dong, Baijun ; Gao, Hongchang</creator><creatorcontrib>Zheng, Hong ; Ji, Jiansong ; Zhao, Liangcai ; Chen, Minjiang ; Shi, An ; Pan, Linlin ; Huang, Yiran ; Zhang, Huajie ; Dong, Baijun ; Gao, Hongchang</creatorcontrib><description>Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.10830</identifier><identifier>PMID: 27463020</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Adult ; Aged ; Biomarkers, Tumor - blood ; Carcinoma, Renal Cell - diagnosis ; Carcinoma, Renal Cell - surgery ; Cohort Studies ; Computer Simulation ; Early Diagnosis ; Female ; Follow-Up Studies ; Humans ; Kidney Neoplasms - diagnosis ; Kidney Neoplasms - surgery ; Magnetic Resonance Spectroscopy ; Male ; Metabolomics ; Middle Aged ; Neoplasm Metastasis ; Nephrectomy ; Predictive Value of Tests ; Prognosis ; Research Paper ; Treatment Outcome</subject><ispartof>Oncotarget, 2016-09, Vol.7 (37), p.59189-59198</ispartof><rights>Copyright: © 2016 Zheng et al. 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</citedby><cites>FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27463020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Ji, Jiansong</creatorcontrib><creatorcontrib>Zhao, Liangcai</creatorcontrib><creatorcontrib>Chen, Minjiang</creatorcontrib><creatorcontrib>Shi, An</creatorcontrib><creatorcontrib>Pan, Linlin</creatorcontrib><creatorcontrib>Huang, Yiran</creatorcontrib><creatorcontrib>Zhang, Huajie</creatorcontrib><creatorcontrib>Dong, Baijun</creatorcontrib><creatorcontrib>Gao, Hongchang</creatorcontrib><title>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.</description><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers, Tumor - blood</subject><subject>Carcinoma, Renal Cell - diagnosis</subject><subject>Carcinoma, Renal Cell - surgery</subject><subject>Cohort Studies</subject><subject>Computer Simulation</subject><subject>Early Diagnosis</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Humans</subject><subject>Kidney Neoplasms - diagnosis</subject><subject>Kidney Neoplasms - surgery</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Metabolomics</subject><subject>Middle Aged</subject><subject>Neoplasm Metastasis</subject><subject>Nephrectomy</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Research Paper</subject><subject>Treatment Outcome</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9PFjEQxhujEYJ8AC-kRy-L_fu-3QsJISIkJHjQczNtZ9eabfvS7pro1S_u8oKAc5hpMs_8OpmHkPecnXKzkeJjyb7MUEecTzkzkr0ih7xXfSe0lq9fvA_IcWs_2BpabY3o35IDsVUbyQQ7JH--VAzRz7FkCjnQEGHMpcVGy0ArZpiox2lNUH3MJQFdWswjzYufECpNqxzn6FdtKxmyx85Bw0Ab1iXRhDO4MpUUfdvzG05DV-oIOf6-5yTYtXfkzQBTw-PHekS-XX76enHV3dx-vr44v-m8EmLuBi29Cb10mjEzOMHYAKhhMH0wQStleqUYd8DdFoJ2PZhgIGyMYmAYF04ekbMH7m5xCYPHPFeY7K7GBPWXLRDt_50cv9ux_LRaciGZWgEfHgG13C3YZptiuz8PZCxLs9yIzVZKocUq5Q9SX0trFYenbzize__ss3927986c_Jyv6eJf27Jvy2DnYw</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Zheng, Hong</creator><creator>Ji, Jiansong</creator><creator>Zhao, Liangcai</creator><creator>Chen, Minjiang</creator><creator>Shi, An</creator><creator>Pan, Linlin</creator><creator>Huang, Yiran</creator><creator>Zhang, Huajie</creator><creator>Dong, Baijun</creator><creator>Gao, Hongchang</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160913</creationdate><title>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</title><author>Zheng, Hong ; Ji, Jiansong ; Zhao, Liangcai ; Chen, Minjiang ; Shi, An ; Pan, Linlin ; Huang, Yiran ; Zhang, Huajie ; Dong, Baijun ; Gao, Hongchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f53c8d93b5008fb200fae5af89d8d544894401ba1b7ad5b9a8d8ad6840a8012b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers, Tumor - blood</topic><topic>Carcinoma, Renal Cell - diagnosis</topic><topic>Carcinoma, Renal Cell - surgery</topic><topic>Cohort Studies</topic><topic>Computer Simulation</topic><topic>Early Diagnosis</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Humans</topic><topic>Kidney Neoplasms - diagnosis</topic><topic>Kidney Neoplasms - surgery</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Metabolomics</topic><topic>Middle Aged</topic><topic>Neoplasm Metastasis</topic><topic>Nephrectomy</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Research Paper</topic><topic>Treatment Outcome</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Ji, Jiansong</creatorcontrib><creatorcontrib>Zhao, Liangcai</creatorcontrib><creatorcontrib>Chen, Minjiang</creatorcontrib><creatorcontrib>Shi, An</creatorcontrib><creatorcontrib>Pan, Linlin</creatorcontrib><creatorcontrib>Huang, Yiran</creatorcontrib><creatorcontrib>Zhang, Huajie</creatorcontrib><creatorcontrib>Dong, Baijun</creatorcontrib><creatorcontrib>Gao, Hongchang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hong</au><au>Ji, Jiansong</au><au>Zhao, Liangcai</au><au>Chen, Minjiang</au><au>Shi, An</au><au>Pan, Linlin</au><au>Huang, Yiran</au><au>Zhang, Huajie</au><au>Dong, Baijun</au><au>Gao, Hongchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>7</volume><issue>37</issue><spage>59189</spage><epage>59198</epage><pages>59189-59198</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>27463020</pmid><doi>10.18632/oncotarget.10830</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof Oncotarget, 2016-09, Vol.7 (37), p.59189-59198
issn 1949-2553
1949-2553
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5312304
source Freely Accessible Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Adult
Aged
Biomarkers, Tumor - blood
Carcinoma, Renal Cell - diagnosis
Carcinoma, Renal Cell - surgery
Cohort Studies
Computer Simulation
Early Diagnosis
Female
Follow-Up Studies
Humans
Kidney Neoplasms - diagnosis
Kidney Neoplasms - surgery
Magnetic Resonance Spectroscopy
Male
Metabolomics
Middle Aged
Neoplasm Metastasis
Nephrectomy
Predictive Value of Tests
Prognosis
Research Paper
Treatment Outcome
title Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20diagnosis%20of%20renal%20cell%20carcinoma%20using%20nuclear%20magnetic%20resonance-based%20serum%20metabolomics%20and%20self-organizing%20maps&rft.jtitle=Oncotarget&rft.au=Zheng,%20Hong&rft.date=2016-09-13&rft.volume=7&rft.issue=37&rft.spage=59189&rft.epage=59198&rft.pages=59189-59198&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.10830&rft_dat=%3Cproquest_pubme%3E1826733252%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826733252&rft_id=info:pmid/27463020&rfr_iscdi=true