Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium

Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Here, we report the application of persistent radical and quinone methide intermediates to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2016-12, Vol.354 (6317), p.1260-1265
Hauptverfasser: Keylor, Mitchell H., Matsuura, Bryan S., Griesser, Markus, Chauvin, Jean-Philippe R., Harding, Ryan A., Kirillova, Mariia S., Zhu, Xu, Fischer, Oliver J., Pratt, Derek A., Stephenson, Corey R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1265
container_issue 6317
container_start_page 1260
container_title Science (American Association for the Advancement of Science)
container_volume 354
creator Keylor, Mitchell H.
Matsuura, Bryan S.
Griesser, Markus
Chauvin, Jean-Philippe R.
Harding, Ryan A.
Kirillova, Mariia S.
Zhu, Xu
Fischer, Oliver J.
Pratt, Derek A.
Stephenson, Corey R. J.
description Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Here, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action.
doi_str_mv 10.1126/science.aaj1597
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5310221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44711180</jstor_id><sourcerecordid>44711180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-28ddbb7d87598648e2563e8dfab627bf2dcb05468c6c1e2b8af2b9cc570b79ba3</originalsourceid><addsrcrecordid>eNqNkb1PHDEQxS2UCA6SOlWildLQLNhefzaRIpRAJKIUkNqyvbPg0-4abO9J_PcY3eVEUqWa4v3m6c08hD4QfEYIFefZB5g9nFm7JlzLA7QiWPNWU9y9QSuMO9EqLPkROs55jXHVdHeIjqjUDCshV-jnzdNc7iGH3MShSZA3kGxJcWwKlGQnSLnZBNvYJhdIEH2cK3EHc2mS7YO3YwOPSxiDS2GZ3qG3gx0zvN_NE_T7-7fbi6v2-tflj4uv163njJaWqr53TvZKcq0EU0C56ED1g3WCSjfQ3jvMmVBeeALUKTtQp73nEjupne1O0Jet78PiJuh9jZPsaB5SmGx6MtEG87cyh3tzFzeGdwRTSqrB6c4gxccFcjFTyB7G0c4Ql2xIjcU5k4r-B8qpEFiIF9fP_6DruKS5fqJSTDLNKGeVOt9SPsWcEwz73ASbl1bNrlWza7VufHp97p7_U2MFPm6BdS4x7XXGJCFE4e4Zg0Wr7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847494254</pqid></control><display><type>article</type><title>Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Keylor, Mitchell H. ; Matsuura, Bryan S. ; Griesser, Markus ; Chauvin, Jean-Philippe R. ; Harding, Ryan A. ; Kirillova, Mariia S. ; Zhu, Xu ; Fischer, Oliver J. ; Pratt, Derek A. ; Stephenson, Corey R. J.</creator><creatorcontrib>Keylor, Mitchell H. ; Matsuura, Bryan S. ; Griesser, Markus ; Chauvin, Jean-Philippe R. ; Harding, Ryan A. ; Kirillova, Mariia S. ; Zhu, Xu ; Fischer, Oliver J. ; Pratt, Derek A. ; Stephenson, Corey R. J.</creatorcontrib><description>Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Here, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaj1597</identifier><identifier>PMID: 27940867</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Benzofurans - chemical synthesis ; Biological Products - chemical synthesis ; Bonding strength ; Carbon ; Carbon - chemistry ; Carbon-carbon composites ; Chemistry ; Dimerization ; Fragments ; Free radicals ; Indolequinones - chemistry ; Organic chemicals ; Oxidation-Reduction ; Polymerization ; Polyphenols ; Radicals ; Resorcinols - chemical synthesis ; Stilbenes - chemical synthesis ; Synthesis ; Synthesis (chemistry)</subject><ispartof>Science (American Association for the Advancement of Science), 2016-12, Vol.354 (6317), p.1260-1265</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-28ddbb7d87598648e2563e8dfab627bf2dcb05468c6c1e2b8af2b9cc570b79ba3</citedby><cites>FETCH-LOGICAL-c542t-28ddbb7d87598648e2563e8dfab627bf2dcb05468c6c1e2b8af2b9cc570b79ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44711180$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44711180$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27940867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keylor, Mitchell H.</creatorcontrib><creatorcontrib>Matsuura, Bryan S.</creatorcontrib><creatorcontrib>Griesser, Markus</creatorcontrib><creatorcontrib>Chauvin, Jean-Philippe R.</creatorcontrib><creatorcontrib>Harding, Ryan A.</creatorcontrib><creatorcontrib>Kirillova, Mariia S.</creatorcontrib><creatorcontrib>Zhu, Xu</creatorcontrib><creatorcontrib>Fischer, Oliver J.</creatorcontrib><creatorcontrib>Pratt, Derek A.</creatorcontrib><creatorcontrib>Stephenson, Corey R. J.</creatorcontrib><title>Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Here, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action.</description><subject>Benzofurans - chemical synthesis</subject><subject>Biological Products - chemical synthesis</subject><subject>Bonding strength</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon-carbon composites</subject><subject>Chemistry</subject><subject>Dimerization</subject><subject>Fragments</subject><subject>Free radicals</subject><subject>Indolequinones - chemistry</subject><subject>Organic chemicals</subject><subject>Oxidation-Reduction</subject><subject>Polymerization</subject><subject>Polyphenols</subject><subject>Radicals</subject><subject>Resorcinols - chemical synthesis</subject><subject>Stilbenes - chemical synthesis</subject><subject>Synthesis</subject><subject>Synthesis (chemistry)</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkb1PHDEQxS2UCA6SOlWildLQLNhefzaRIpRAJKIUkNqyvbPg0-4abO9J_PcY3eVEUqWa4v3m6c08hD4QfEYIFefZB5g9nFm7JlzLA7QiWPNWU9y9QSuMO9EqLPkROs55jXHVdHeIjqjUDCshV-jnzdNc7iGH3MShSZA3kGxJcWwKlGQnSLnZBNvYJhdIEH2cK3EHc2mS7YO3YwOPSxiDS2GZ3qG3gx0zvN_NE_T7-7fbi6v2-tflj4uv163njJaWqr53TvZKcq0EU0C56ED1g3WCSjfQ3jvMmVBeeALUKTtQp73nEjupne1O0Jet78PiJuh9jZPsaB5SmGx6MtEG87cyh3tzFzeGdwRTSqrB6c4gxccFcjFTyB7G0c4Ql2xIjcU5k4r-B8qpEFiIF9fP_6DruKS5fqJSTDLNKGeVOt9SPsWcEwz73ASbl1bNrlWza7VufHp97p7_U2MFPm6BdS4x7XXGJCFE4e4Zg0Wr7Q</recordid><startdate>20161209</startdate><enddate>20161209</enddate><creator>Keylor, Mitchell H.</creator><creator>Matsuura, Bryan S.</creator><creator>Griesser, Markus</creator><creator>Chauvin, Jean-Philippe R.</creator><creator>Harding, Ryan A.</creator><creator>Kirillova, Mariia S.</creator><creator>Zhu, Xu</creator><creator>Fischer, Oliver J.</creator><creator>Pratt, Derek A.</creator><creator>Stephenson, Corey R. J.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161209</creationdate><title>Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium</title><author>Keylor, Mitchell H. ; Matsuura, Bryan S. ; Griesser, Markus ; Chauvin, Jean-Philippe R. ; Harding, Ryan A. ; Kirillova, Mariia S. ; Zhu, Xu ; Fischer, Oliver J. ; Pratt, Derek A. ; Stephenson, Corey R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-28ddbb7d87598648e2563e8dfab627bf2dcb05468c6c1e2b8af2b9cc570b79ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benzofurans - chemical synthesis</topic><topic>Biological Products - chemical synthesis</topic><topic>Bonding strength</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon-carbon composites</topic><topic>Chemistry</topic><topic>Dimerization</topic><topic>Fragments</topic><topic>Free radicals</topic><topic>Indolequinones - chemistry</topic><topic>Organic chemicals</topic><topic>Oxidation-Reduction</topic><topic>Polymerization</topic><topic>Polyphenols</topic><topic>Radicals</topic><topic>Resorcinols - chemical synthesis</topic><topic>Stilbenes - chemical synthesis</topic><topic>Synthesis</topic><topic>Synthesis (chemistry)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keylor, Mitchell H.</creatorcontrib><creatorcontrib>Matsuura, Bryan S.</creatorcontrib><creatorcontrib>Griesser, Markus</creatorcontrib><creatorcontrib>Chauvin, Jean-Philippe R.</creatorcontrib><creatorcontrib>Harding, Ryan A.</creatorcontrib><creatorcontrib>Kirillova, Mariia S.</creatorcontrib><creatorcontrib>Zhu, Xu</creatorcontrib><creatorcontrib>Fischer, Oliver J.</creatorcontrib><creatorcontrib>Pratt, Derek A.</creatorcontrib><creatorcontrib>Stephenson, Corey R. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keylor, Mitchell H.</au><au>Matsuura, Bryan S.</au><au>Griesser, Markus</au><au>Chauvin, Jean-Philippe R.</au><au>Harding, Ryan A.</au><au>Kirillova, Mariia S.</au><au>Zhu, Xu</au><au>Fischer, Oliver J.</au><au>Pratt, Derek A.</au><au>Stephenson, Corey R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-12-09</date><risdate>2016</risdate><volume>354</volume><issue>6317</issue><spage>1260</spage><epage>1265</epage><pages>1260-1265</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Here, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27940867</pmid><doi>10.1126/science.aaj1597</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2016-12, Vol.354 (6317), p.1260-1265
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5310221
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Benzofurans - chemical synthesis
Biological Products - chemical synthesis
Bonding strength
Carbon
Carbon - chemistry
Carbon-carbon composites
Chemistry
Dimerization
Fragments
Free radicals
Indolequinones - chemistry
Organic chemicals
Oxidation-Reduction
Polymerization
Polyphenols
Radicals
Resorcinols - chemical synthesis
Stilbenes - chemical synthesis
Synthesis
Synthesis (chemistry)
title Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20resveratrol%20tetramers%20via%20a%20stereoconvergent%20radical%20equilibrium&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Keylor,%20Mitchell%20H.&rft.date=2016-12-09&rft.volume=354&rft.issue=6317&rft.spage=1260&rft.epage=1265&rft.pages=1260-1265&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaj1597&rft_dat=%3Cjstor_pubme%3E44711180%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847494254&rft_id=info:pmid/27940867&rft_jstor_id=44711180&rfr_iscdi=true