Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-02, Vol.114 (6), p.1252-1257
Hauptverfasser: Stukel, Michael R., Aluwihare, Lihini I., Barbeau, Katherine A., Chekalyuk, Alexander M., Goericke, Ralf, Miller, Arthur J., Ohman, Mark D., Ruacho, Angel, Song, Hajoon, Stephens, Brandon M., Landry, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1257
container_issue 6
container_start_page 1252
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Stukel, Michael R.
Aluwihare, Lihini I.
Barbeau, Katherine A.
Chekalyuk, Alexander M.
Goericke, Ralf
Miller, Arthur J.
Ohman, Mark D.
Ruacho, Angel
Song, Hajoon
Stephens, Brandon M.
Landry, Michael R.
description Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.
doi_str_mv 10.1073/pnas.1609435114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5307443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479203</jstor_id><sourcerecordid>26479203</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</originalsourceid><addsrcrecordid>eNqNkTtvFDEURi0EIstCTQWyREMzid_2NEhRxEsKogGJzrI9dzazzNqL7Yng3-NlQwJUVC6-cz9d34PQU0pOKdH8bB9dOaWK9IJLSsU9tKKkp50SPbmPVoQw3RnBxAl6VMqWENJLQx6iE2YolZrxFfryAUoqwc2AUwAX8ZhTrAVDvHIxAA4u-xQxfN-nXPGwAK4Jb7K7nqqrU4puxmWKX6e4wS4OuCx-WMIheIwejG4u8OTmXaPPb15_unjXXX58-_7i_LJzou9rx4MApVQPmjE-eM2FGQTRQQrulfTMKGDceC-8l32Qo4NRSTUq4xwB3fg1enXs3S9-B0OAWLOb7T5PO5d_2OQm-3cSpyu7SddWcqKF4K3g5U1BTt8WKNXuphJgnl2EtBRLjaFaGUnMf6CquRAHM2v04h90m5bczvWL0u3-zUCjzo5UyKmUDOPt3pTYQ409CLZ3gtvE8z-_e8v_NtqAZ0dgW2rKd7kSumeE85_55KxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867811115</pqid></control><display><type>article</type><title>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stukel, Michael R. ; Aluwihare, Lihini I. ; Barbeau, Katherine A. ; Chekalyuk, Alexander M. ; Goericke, Ralf ; Miller, Arthur J. ; Ohman, Mark D. ; Ruacho, Angel ; Song, Hajoon ; Stephens, Brandon M. ; Landry, Michael R.</creator><creatorcontrib>Stukel, Michael R. ; Aluwihare, Lihini I. ; Barbeau, Katherine A. ; Chekalyuk, Alexander M. ; Goericke, Ralf ; Miller, Arthur J. ; Ohman, Mark D. ; Ruacho, Angel ; Song, Hajoon ; Stephens, Brandon M. ; Landry, Michael R.</creatorcontrib><description>Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609435114</identifier><identifier>PMID: 28115723</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacillariophyceae ; Carbon sequestration ; Ecosystems ; Physical Sciences ; Plankton ; Sediments</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (6), p.1252-1257</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 7, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</citedby><cites>FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479203$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479203$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28115723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stukel, Michael R.</creatorcontrib><creatorcontrib>Aluwihare, Lihini I.</creatorcontrib><creatorcontrib>Barbeau, Katherine A.</creatorcontrib><creatorcontrib>Chekalyuk, Alexander M.</creatorcontrib><creatorcontrib>Goericke, Ralf</creatorcontrib><creatorcontrib>Miller, Arthur J.</creatorcontrib><creatorcontrib>Ohman, Mark D.</creatorcontrib><creatorcontrib>Ruacho, Angel</creatorcontrib><creatorcontrib>Song, Hajoon</creatorcontrib><creatorcontrib>Stephens, Brandon M.</creatorcontrib><creatorcontrib>Landry, Michael R.</creatorcontrib><title>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.</description><subject>Bacillariophyceae</subject><subject>Carbon sequestration</subject><subject>Ecosystems</subject><subject>Physical Sciences</subject><subject>Plankton</subject><subject>Sediments</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkTtvFDEURi0EIstCTQWyREMzid_2NEhRxEsKogGJzrI9dzazzNqL7Yng3-NlQwJUVC6-cz9d34PQU0pOKdH8bB9dOaWK9IJLSsU9tKKkp50SPbmPVoQw3RnBxAl6VMqWENJLQx6iE2YolZrxFfryAUoqwc2AUwAX8ZhTrAVDvHIxAA4u-xQxfN-nXPGwAK4Jb7K7nqqrU4puxmWKX6e4wS4OuCx-WMIheIwejG4u8OTmXaPPb15_unjXXX58-_7i_LJzou9rx4MApVQPmjE-eM2FGQTRQQrulfTMKGDceC-8l32Qo4NRSTUq4xwB3fg1enXs3S9-B0OAWLOb7T5PO5d_2OQm-3cSpyu7SddWcqKF4K3g5U1BTt8WKNXuphJgnl2EtBRLjaFaGUnMf6CquRAHM2v04h90m5bczvWL0u3-zUCjzo5UyKmUDOPt3pTYQ409CLZ3gtvE8z-_e8v_NtqAZ0dgW2rKd7kSumeE85_55KxE</recordid><startdate>20170207</startdate><enddate>20170207</enddate><creator>Stukel, Michael R.</creator><creator>Aluwihare, Lihini I.</creator><creator>Barbeau, Katherine A.</creator><creator>Chekalyuk, Alexander M.</creator><creator>Goericke, Ralf</creator><creator>Miller, Arthur J.</creator><creator>Ohman, Mark D.</creator><creator>Ruacho, Angel</creator><creator>Song, Hajoon</creator><creator>Stephens, Brandon M.</creator><creator>Landry, Michael R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170207</creationdate><title>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</title><author>Stukel, Michael R. ; Aluwihare, Lihini I. ; Barbeau, Katherine A. ; Chekalyuk, Alexander M. ; Goericke, Ralf ; Miller, Arthur J. ; Ohman, Mark D. ; Ruacho, Angel ; Song, Hajoon ; Stephens, Brandon M. ; Landry, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacillariophyceae</topic><topic>Carbon sequestration</topic><topic>Ecosystems</topic><topic>Physical Sciences</topic><topic>Plankton</topic><topic>Sediments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stukel, Michael R.</creatorcontrib><creatorcontrib>Aluwihare, Lihini I.</creatorcontrib><creatorcontrib>Barbeau, Katherine A.</creatorcontrib><creatorcontrib>Chekalyuk, Alexander M.</creatorcontrib><creatorcontrib>Goericke, Ralf</creatorcontrib><creatorcontrib>Miller, Arthur J.</creatorcontrib><creatorcontrib>Ohman, Mark D.</creatorcontrib><creatorcontrib>Ruacho, Angel</creatorcontrib><creatorcontrib>Song, Hajoon</creatorcontrib><creatorcontrib>Stephens, Brandon M.</creatorcontrib><creatorcontrib>Landry, Michael R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stukel, Michael R.</au><au>Aluwihare, Lihini I.</au><au>Barbeau, Katherine A.</au><au>Chekalyuk, Alexander M.</au><au>Goericke, Ralf</au><au>Miller, Arthur J.</au><au>Ohman, Mark D.</au><au>Ruacho, Angel</au><au>Song, Hajoon</au><au>Stephens, Brandon M.</au><au>Landry, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-02-07</date><risdate>2017</risdate><volume>114</volume><issue>6</issue><spage>1252</spage><epage>1257</epage><pages>1252-1257</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28115723</pmid><doi>10.1073/pnas.1609435114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (6), p.1252-1257
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5307443
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacillariophyceae
Carbon sequestration
Ecosystems
Physical Sciences
Plankton
Sediments
title Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20ocean%20fronts%20enhance%20carbon%20export%20due%20to%20gravitational%20sinking%20and%20subduction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stukel,%20Michael%20R.&rft.date=2017-02-07&rft.volume=114&rft.issue=6&rft.spage=1252&rft.epage=1257&rft.pages=1252-1257&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609435114&rft_dat=%3Cjstor_pubme%3E26479203%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867811115&rft_id=info:pmid/28115723&rft_jstor_id=26479203&rfr_iscdi=true