Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction
Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we fo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-02, Vol.114 (6), p.1252-1257 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1257 |
---|---|
container_issue | 6 |
container_start_page | 1252 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Stukel, Michael R. Aluwihare, Lihini I. Barbeau, Katherine A. Chekalyuk, Alexander M. Goericke, Ralf Miller, Arthur J. Ohman, Mark D. Ruacho, Angel Song, Hajoon Stephens, Brandon M. Landry, Michael R. |
description | Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems. |
doi_str_mv | 10.1073/pnas.1609435114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5307443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479203</jstor_id><sourcerecordid>26479203</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</originalsourceid><addsrcrecordid>eNqNkTtvFDEURi0EIstCTQWyREMzid_2NEhRxEsKogGJzrI9dzazzNqL7Yng3-NlQwJUVC6-cz9d34PQU0pOKdH8bB9dOaWK9IJLSsU9tKKkp50SPbmPVoQw3RnBxAl6VMqWENJLQx6iE2YolZrxFfryAUoqwc2AUwAX8ZhTrAVDvHIxAA4u-xQxfN-nXPGwAK4Jb7K7nqqrU4puxmWKX6e4wS4OuCx-WMIheIwejG4u8OTmXaPPb15_unjXXX58-_7i_LJzou9rx4MApVQPmjE-eM2FGQTRQQrulfTMKGDceC-8l32Qo4NRSTUq4xwB3fg1enXs3S9-B0OAWLOb7T5PO5d_2OQm-3cSpyu7SddWcqKF4K3g5U1BTt8WKNXuphJgnl2EtBRLjaFaGUnMf6CquRAHM2v04h90m5bczvWL0u3-zUCjzo5UyKmUDOPt3pTYQ409CLZ3gtvE8z-_e8v_NtqAZ0dgW2rKd7kSumeE85_55KxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867811115</pqid></control><display><type>article</type><title>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stukel, Michael R. ; Aluwihare, Lihini I. ; Barbeau, Katherine A. ; Chekalyuk, Alexander M. ; Goericke, Ralf ; Miller, Arthur J. ; Ohman, Mark D. ; Ruacho, Angel ; Song, Hajoon ; Stephens, Brandon M. ; Landry, Michael R.</creator><creatorcontrib>Stukel, Michael R. ; Aluwihare, Lihini I. ; Barbeau, Katherine A. ; Chekalyuk, Alexander M. ; Goericke, Ralf ; Miller, Arthur J. ; Ohman, Mark D. ; Ruacho, Angel ; Song, Hajoon ; Stephens, Brandon M. ; Landry, Michael R.</creatorcontrib><description>Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609435114</identifier><identifier>PMID: 28115723</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacillariophyceae ; Carbon sequestration ; Ecosystems ; Physical Sciences ; Plankton ; Sediments</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (6), p.1252-1257</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 7, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</citedby><cites>FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479203$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479203$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28115723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stukel, Michael R.</creatorcontrib><creatorcontrib>Aluwihare, Lihini I.</creatorcontrib><creatorcontrib>Barbeau, Katherine A.</creatorcontrib><creatorcontrib>Chekalyuk, Alexander M.</creatorcontrib><creatorcontrib>Goericke, Ralf</creatorcontrib><creatorcontrib>Miller, Arthur J.</creatorcontrib><creatorcontrib>Ohman, Mark D.</creatorcontrib><creatorcontrib>Ruacho, Angel</creatorcontrib><creatorcontrib>Song, Hajoon</creatorcontrib><creatorcontrib>Stephens, Brandon M.</creatorcontrib><creatorcontrib>Landry, Michael R.</creatorcontrib><title>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.</description><subject>Bacillariophyceae</subject><subject>Carbon sequestration</subject><subject>Ecosystems</subject><subject>Physical Sciences</subject><subject>Plankton</subject><subject>Sediments</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkTtvFDEURi0EIstCTQWyREMzid_2NEhRxEsKogGJzrI9dzazzNqL7Yng3-NlQwJUVC6-cz9d34PQU0pOKdH8bB9dOaWK9IJLSsU9tKKkp50SPbmPVoQw3RnBxAl6VMqWENJLQx6iE2YolZrxFfryAUoqwc2AUwAX8ZhTrAVDvHIxAA4u-xQxfN-nXPGwAK4Jb7K7nqqrU4puxmWKX6e4wS4OuCx-WMIheIwejG4u8OTmXaPPb15_unjXXX58-_7i_LJzou9rx4MApVQPmjE-eM2FGQTRQQrulfTMKGDceC-8l32Qo4NRSTUq4xwB3fg1enXs3S9-B0OAWLOb7T5PO5d_2OQm-3cSpyu7SddWcqKF4K3g5U1BTt8WKNXuphJgnl2EtBRLjaFaGUnMf6CquRAHM2v04h90m5bczvWL0u3-zUCjzo5UyKmUDOPt3pTYQ409CLZ3gtvE8z-_e8v_NtqAZ0dgW2rKd7kSumeE85_55KxE</recordid><startdate>20170207</startdate><enddate>20170207</enddate><creator>Stukel, Michael R.</creator><creator>Aluwihare, Lihini I.</creator><creator>Barbeau, Katherine A.</creator><creator>Chekalyuk, Alexander M.</creator><creator>Goericke, Ralf</creator><creator>Miller, Arthur J.</creator><creator>Ohman, Mark D.</creator><creator>Ruacho, Angel</creator><creator>Song, Hajoon</creator><creator>Stephens, Brandon M.</creator><creator>Landry, Michael R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170207</creationdate><title>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</title><author>Stukel, Michael R. ; Aluwihare, Lihini I. ; Barbeau, Katherine A. ; Chekalyuk, Alexander M. ; Goericke, Ralf ; Miller, Arthur J. ; Ohman, Mark D. ; Ruacho, Angel ; Song, Hajoon ; Stephens, Brandon M. ; Landry, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-3c4e6669e7223db7348d407c543b65b286e238bb4bb59c5faef656f68aa0e7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacillariophyceae</topic><topic>Carbon sequestration</topic><topic>Ecosystems</topic><topic>Physical Sciences</topic><topic>Plankton</topic><topic>Sediments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stukel, Michael R.</creatorcontrib><creatorcontrib>Aluwihare, Lihini I.</creatorcontrib><creatorcontrib>Barbeau, Katherine A.</creatorcontrib><creatorcontrib>Chekalyuk, Alexander M.</creatorcontrib><creatorcontrib>Goericke, Ralf</creatorcontrib><creatorcontrib>Miller, Arthur J.</creatorcontrib><creatorcontrib>Ohman, Mark D.</creatorcontrib><creatorcontrib>Ruacho, Angel</creatorcontrib><creatorcontrib>Song, Hajoon</creatorcontrib><creatorcontrib>Stephens, Brandon M.</creatorcontrib><creatorcontrib>Landry, Michael R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stukel, Michael R.</au><au>Aluwihare, Lihini I.</au><au>Barbeau, Katherine A.</au><au>Chekalyuk, Alexander M.</au><au>Goericke, Ralf</au><au>Miller, Arthur J.</au><au>Ohman, Mark D.</au><au>Ruacho, Angel</au><au>Song, Hajoon</au><au>Stephens, Brandon M.</au><au>Landry, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-02-07</date><risdate>2017</risdate><volume>114</volume><issue>6</issue><spage>1252</spage><epage>1257</epage><pages>1252-1257</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C·m−2·d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C·m−2·d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28115723</pmid><doi>10.1073/pnas.1609435114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-02, Vol.114 (6), p.1252-1257 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5307443 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacillariophyceae Carbon sequestration Ecosystems Physical Sciences Plankton Sediments |
title | Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20ocean%20fronts%20enhance%20carbon%20export%20due%20to%20gravitational%20sinking%20and%20subduction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stukel,%20Michael%20R.&rft.date=2017-02-07&rft.volume=114&rft.issue=6&rft.spage=1252&rft.epage=1257&rft.pages=1252-1257&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609435114&rft_dat=%3Cjstor_pubme%3E26479203%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867811115&rft_id=info:pmid/28115723&rft_jstor_id=26479203&rfr_iscdi=true |