Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling
Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc...
Gespeichert in:
Veröffentlicht in: | Inflammopharmacology 2017-02, Vol.25 (1), p.11-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Inflammopharmacology |
container_volume | 25 |
creator | Jarosz, Magdalena Olbert, Magdalena Wyszogrodzka, Gabriela Młyniec, Katarzyna Librowski, Tadeusz |
description | Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8. |
doi_str_mv | 10.1007/s10787-017-0309-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5306179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861466218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</originalsourceid><addsrcrecordid>eNp9Uc1u1DAQtipQuxQeoJcqRy4uY8fxz6VSqVpAqkBCcOFiOcl46yqxFztbtTwaD8Ez4WpLBRcOM3P4fmY0HyFHDE4YgHpTGCitKLBaLRgq9siKdVLTToJ-RlZgeEeFNPyAvCjlBgCkkmafHHANulVCr8jns7iEdBdGF5fGxbHWEmiIfnLz7JaU7xv0HoelNMk3P0IcTppvtdMRNxhHrKqPl_TXz7dNCevophDXL8lz76aCrx7nIfl6efHl_D29-vTuw_nZFR2E4AtlZlQoJPacA-DgwUvee6OU6Z2UKIU3zvUo2Dg60bUdctWKvldaCBDYdu0hOd35brb9jONQb8luspscZpfvbXLB_ovEcG3X6dZ2LUimTDV4_WiQ0_ctlsXOoQw4TS5i2hbLtGRCSs50pbIddciplIz-aQ0D-5CF3WVhaxb2IQsrqub47_ueFH-eXwl8RygVimvM9iZtc31i-Y_rb5gulpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861466218</pqid></control><display><type>article</type><title>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jarosz, Magdalena ; Olbert, Magdalena ; Wyszogrodzka, Gabriela ; Młyniec, Katarzyna ; Librowski, Tadeusz</creator><creatorcontrib>Jarosz, Magdalena ; Olbert, Magdalena ; Wyszogrodzka, Gabriela ; Młyniec, Katarzyna ; Librowski, Tadeusz</creatorcontrib><description>Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.</description><identifier>ISSN: 0925-4692</identifier><identifier>EISSN: 1568-5608</identifier><identifier>DOI: 10.1007/s10787-017-0309-4</identifier><identifier>PMID: 28083748</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Allergology ; Animals ; Anti-Inflammatory Agents - pharmacology ; Anti-Inflammatory Agents - therapeutic use ; Antioxidants - pharmacology ; Antioxidants - therapeutic use ; Biomedical and Life Sciences ; Biomedicine ; Dermatology ; Gastroenterology ; Humans ; Immunology ; Inflammation - drug therapy ; Inflammation - immunology ; Inflammation - metabolism ; NF-kappa B - antagonists & inhibitors ; NF-kappa B - metabolism ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; Pharmacology/Toxicology ; Review ; Rheumatology ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Zinc - pharmacology ; Zinc - therapeutic use</subject><ispartof>Inflammopharmacology, 2017-02, Vol.25 (1), p.11-24</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</citedby><cites>FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</cites><orcidid>0000-0002-8120-6785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10787-017-0309-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10787-017-0309-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28083748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarosz, Magdalena</creatorcontrib><creatorcontrib>Olbert, Magdalena</creatorcontrib><creatorcontrib>Wyszogrodzka, Gabriela</creatorcontrib><creatorcontrib>Młyniec, Katarzyna</creatorcontrib><creatorcontrib>Librowski, Tadeusz</creatorcontrib><title>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</title><title>Inflammopharmacology</title><addtitle>Inflammopharmacol</addtitle><addtitle>Inflammopharmacology</addtitle><description>Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.</description><subject>Allergology</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Antioxidants - pharmacology</subject><subject>Antioxidants - therapeutic use</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Dermatology</subject><subject>Gastroenterology</subject><subject>Humans</subject><subject>Immunology</subject><subject>Inflammation - drug therapy</subject><subject>Inflammation - immunology</subject><subject>Inflammation - metabolism</subject><subject>NF-kappa B - antagonists & inhibitors</subject><subject>NF-kappa B - metabolism</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>Pharmacology/Toxicology</subject><subject>Review</subject><subject>Rheumatology</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Zinc - pharmacology</subject><subject>Zinc - therapeutic use</subject><issn>0925-4692</issn><issn>1568-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9Uc1u1DAQtipQuxQeoJcqRy4uY8fxz6VSqVpAqkBCcOFiOcl46yqxFztbtTwaD8Ez4WpLBRcOM3P4fmY0HyFHDE4YgHpTGCitKLBaLRgq9siKdVLTToJ-RlZgeEeFNPyAvCjlBgCkkmafHHANulVCr8jns7iEdBdGF5fGxbHWEmiIfnLz7JaU7xv0HoelNMk3P0IcTppvtdMRNxhHrKqPl_TXz7dNCevophDXL8lz76aCrx7nIfl6efHl_D29-vTuw_nZFR2E4AtlZlQoJPacA-DgwUvee6OU6Z2UKIU3zvUo2Dg60bUdctWKvldaCBDYdu0hOd35brb9jONQb8luspscZpfvbXLB_ovEcG3X6dZ2LUimTDV4_WiQ0_ctlsXOoQw4TS5i2hbLtGRCSs50pbIddciplIz-aQ0D-5CF3WVhaxb2IQsrqub47_ueFH-eXwl8RygVimvM9iZtc31i-Y_rb5gulpA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Jarosz, Magdalena</creator><creator>Olbert, Magdalena</creator><creator>Wyszogrodzka, Gabriela</creator><creator>Młyniec, Katarzyna</creator><creator>Librowski, Tadeusz</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8120-6785</orcidid></search><sort><creationdate>20170201</creationdate><title>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</title><author>Jarosz, Magdalena ; Olbert, Magdalena ; Wyszogrodzka, Gabriela ; Młyniec, Katarzyna ; Librowski, Tadeusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Allergology</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Antioxidants - pharmacology</topic><topic>Antioxidants - therapeutic use</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Dermatology</topic><topic>Gastroenterology</topic><topic>Humans</topic><topic>Immunology</topic><topic>Inflammation - drug therapy</topic><topic>Inflammation - immunology</topic><topic>Inflammation - metabolism</topic><topic>NF-kappa B - antagonists & inhibitors</topic><topic>NF-kappa B - metabolism</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>Pharmacology/Toxicology</topic><topic>Review</topic><topic>Rheumatology</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Zinc - pharmacology</topic><topic>Zinc - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarosz, Magdalena</creatorcontrib><creatorcontrib>Olbert, Magdalena</creatorcontrib><creatorcontrib>Wyszogrodzka, Gabriela</creatorcontrib><creatorcontrib>Młyniec, Katarzyna</creatorcontrib><creatorcontrib>Librowski, Tadeusz</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inflammopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarosz, Magdalena</au><au>Olbert, Magdalena</au><au>Wyszogrodzka, Gabriela</au><au>Młyniec, Katarzyna</au><au>Librowski, Tadeusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</atitle><jtitle>Inflammopharmacology</jtitle><stitle>Inflammopharmacol</stitle><addtitle>Inflammopharmacology</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>25</volume><issue>1</issue><spage>11</spage><epage>24</epage><pages>11-24</pages><issn>0925-4692</issn><eissn>1568-5608</eissn><abstract>Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>28083748</pmid><doi>10.1007/s10787-017-0309-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8120-6785</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4692 |
ispartof | Inflammopharmacology, 2017-02, Vol.25 (1), p.11-24 |
issn | 0925-4692 1568-5608 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5306179 |
source | MEDLINE; SpringerLink Journals |
subjects | Allergology Animals Anti-Inflammatory Agents - pharmacology Anti-Inflammatory Agents - therapeutic use Antioxidants - pharmacology Antioxidants - therapeutic use Biomedical and Life Sciences Biomedicine Dermatology Gastroenterology Humans Immunology Inflammation - drug therapy Inflammation - immunology Inflammation - metabolism NF-kappa B - antagonists & inhibitors NF-kappa B - metabolism Oxidative Stress - drug effects Oxidative Stress - physiology Pharmacology/Toxicology Review Rheumatology Signal Transduction - drug effects Signal Transduction - physiology Zinc - pharmacology Zinc - therapeutic use |
title | Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidant%20and%20anti-inflammatory%20effects%20of%20zinc.%20Zinc-dependent%20NF-%CE%BAB%20signaling&rft.jtitle=Inflammopharmacology&rft.au=Jarosz,%20Magdalena&rft.date=2017-02-01&rft.volume=25&rft.issue=1&rft.spage=11&rft.epage=24&rft.pages=11-24&rft.issn=0925-4692&rft.eissn=1568-5608&rft_id=info:doi/10.1007/s10787-017-0309-4&rft_dat=%3Cproquest_pubme%3E1861466218%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861466218&rft_id=info:pmid/28083748&rfr_iscdi=true |