Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling

Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammopharmacology 2017-02, Vol.25 (1), p.11-24
Hauptverfasser: Jarosz, Magdalena, Olbert, Magdalena, Wyszogrodzka, Gabriela, Młyniec, Katarzyna, Librowski, Tadeusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 11
container_title Inflammopharmacology
container_volume 25
creator Jarosz, Magdalena
Olbert, Magdalena
Wyszogrodzka, Gabriela
Młyniec, Katarzyna
Librowski, Tadeusz
description Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.
doi_str_mv 10.1007/s10787-017-0309-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5306179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861466218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</originalsourceid><addsrcrecordid>eNp9Uc1u1DAQtipQuxQeoJcqRy4uY8fxz6VSqVpAqkBCcOFiOcl46yqxFztbtTwaD8Ez4WpLBRcOM3P4fmY0HyFHDE4YgHpTGCitKLBaLRgq9siKdVLTToJ-RlZgeEeFNPyAvCjlBgCkkmafHHANulVCr8jns7iEdBdGF5fGxbHWEmiIfnLz7JaU7xv0HoelNMk3P0IcTppvtdMRNxhHrKqPl_TXz7dNCevophDXL8lz76aCrx7nIfl6efHl_D29-vTuw_nZFR2E4AtlZlQoJPacA-DgwUvee6OU6Z2UKIU3zvUo2Dg60bUdctWKvldaCBDYdu0hOd35brb9jONQb8luspscZpfvbXLB_ovEcG3X6dZ2LUimTDV4_WiQ0_ctlsXOoQw4TS5i2hbLtGRCSs50pbIddciplIz-aQ0D-5CF3WVhaxb2IQsrqub47_ueFH-eXwl8RygVimvM9iZtc31i-Y_rb5gulpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861466218</pqid></control><display><type>article</type><title>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jarosz, Magdalena ; Olbert, Magdalena ; Wyszogrodzka, Gabriela ; Młyniec, Katarzyna ; Librowski, Tadeusz</creator><creatorcontrib>Jarosz, Magdalena ; Olbert, Magdalena ; Wyszogrodzka, Gabriela ; Młyniec, Katarzyna ; Librowski, Tadeusz</creatorcontrib><description>Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.</description><identifier>ISSN: 0925-4692</identifier><identifier>EISSN: 1568-5608</identifier><identifier>DOI: 10.1007/s10787-017-0309-4</identifier><identifier>PMID: 28083748</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Allergology ; Animals ; Anti-Inflammatory Agents - pharmacology ; Anti-Inflammatory Agents - therapeutic use ; Antioxidants - pharmacology ; Antioxidants - therapeutic use ; Biomedical and Life Sciences ; Biomedicine ; Dermatology ; Gastroenterology ; Humans ; Immunology ; Inflammation - drug therapy ; Inflammation - immunology ; Inflammation - metabolism ; NF-kappa B - antagonists &amp; inhibitors ; NF-kappa B - metabolism ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; Pharmacology/Toxicology ; Review ; Rheumatology ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Zinc - pharmacology ; Zinc - therapeutic use</subject><ispartof>Inflammopharmacology, 2017-02, Vol.25 (1), p.11-24</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</citedby><cites>FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</cites><orcidid>0000-0002-8120-6785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10787-017-0309-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10787-017-0309-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28083748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarosz, Magdalena</creatorcontrib><creatorcontrib>Olbert, Magdalena</creatorcontrib><creatorcontrib>Wyszogrodzka, Gabriela</creatorcontrib><creatorcontrib>Młyniec, Katarzyna</creatorcontrib><creatorcontrib>Librowski, Tadeusz</creatorcontrib><title>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</title><title>Inflammopharmacology</title><addtitle>Inflammopharmacol</addtitle><addtitle>Inflammopharmacology</addtitle><description>Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.</description><subject>Allergology</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Antioxidants - pharmacology</subject><subject>Antioxidants - therapeutic use</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Dermatology</subject><subject>Gastroenterology</subject><subject>Humans</subject><subject>Immunology</subject><subject>Inflammation - drug therapy</subject><subject>Inflammation - immunology</subject><subject>Inflammation - metabolism</subject><subject>NF-kappa B - antagonists &amp; inhibitors</subject><subject>NF-kappa B - metabolism</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>Pharmacology/Toxicology</subject><subject>Review</subject><subject>Rheumatology</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Zinc - pharmacology</subject><subject>Zinc - therapeutic use</subject><issn>0925-4692</issn><issn>1568-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9Uc1u1DAQtipQuxQeoJcqRy4uY8fxz6VSqVpAqkBCcOFiOcl46yqxFztbtTwaD8Ez4WpLBRcOM3P4fmY0HyFHDE4YgHpTGCitKLBaLRgq9siKdVLTToJ-RlZgeEeFNPyAvCjlBgCkkmafHHANulVCr8jns7iEdBdGF5fGxbHWEmiIfnLz7JaU7xv0HoelNMk3P0IcTppvtdMRNxhHrKqPl_TXz7dNCevophDXL8lz76aCrx7nIfl6efHl_D29-vTuw_nZFR2E4AtlZlQoJPacA-DgwUvee6OU6Z2UKIU3zvUo2Dg60bUdctWKvldaCBDYdu0hOd35brb9jONQb8luspscZpfvbXLB_ovEcG3X6dZ2LUimTDV4_WiQ0_ctlsXOoQw4TS5i2hbLtGRCSs50pbIddciplIz-aQ0D-5CF3WVhaxb2IQsrqub47_ueFH-eXwl8RygVimvM9iZtc31i-Y_rb5gulpA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Jarosz, Magdalena</creator><creator>Olbert, Magdalena</creator><creator>Wyszogrodzka, Gabriela</creator><creator>Młyniec, Katarzyna</creator><creator>Librowski, Tadeusz</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8120-6785</orcidid></search><sort><creationdate>20170201</creationdate><title>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</title><author>Jarosz, Magdalena ; Olbert, Magdalena ; Wyszogrodzka, Gabriela ; Młyniec, Katarzyna ; Librowski, Tadeusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-19d7e46eb2200ecf0f62bf9779ba66e64f9aabe41dda4535e2734bb784404e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Allergology</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Antioxidants - pharmacology</topic><topic>Antioxidants - therapeutic use</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Dermatology</topic><topic>Gastroenterology</topic><topic>Humans</topic><topic>Immunology</topic><topic>Inflammation - drug therapy</topic><topic>Inflammation - immunology</topic><topic>Inflammation - metabolism</topic><topic>NF-kappa B - antagonists &amp; inhibitors</topic><topic>NF-kappa B - metabolism</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>Pharmacology/Toxicology</topic><topic>Review</topic><topic>Rheumatology</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Zinc - pharmacology</topic><topic>Zinc - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarosz, Magdalena</creatorcontrib><creatorcontrib>Olbert, Magdalena</creatorcontrib><creatorcontrib>Wyszogrodzka, Gabriela</creatorcontrib><creatorcontrib>Młyniec, Katarzyna</creatorcontrib><creatorcontrib>Librowski, Tadeusz</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inflammopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarosz, Magdalena</au><au>Olbert, Magdalena</au><au>Wyszogrodzka, Gabriela</au><au>Młyniec, Katarzyna</au><au>Librowski, Tadeusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling</atitle><jtitle>Inflammopharmacology</jtitle><stitle>Inflammopharmacol</stitle><addtitle>Inflammopharmacology</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>25</volume><issue>1</issue><spage>11</spage><epage>24</epage><pages>11-24</pages><issn>0925-4692</issn><eissn>1568-5608</eissn><abstract>Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>28083748</pmid><doi>10.1007/s10787-017-0309-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8120-6785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-4692
ispartof Inflammopharmacology, 2017-02, Vol.25 (1), p.11-24
issn 0925-4692
1568-5608
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5306179
source MEDLINE; SpringerLink Journals
subjects Allergology
Animals
Anti-Inflammatory Agents - pharmacology
Anti-Inflammatory Agents - therapeutic use
Antioxidants - pharmacology
Antioxidants - therapeutic use
Biomedical and Life Sciences
Biomedicine
Dermatology
Gastroenterology
Humans
Immunology
Inflammation - drug therapy
Inflammation - immunology
Inflammation - metabolism
NF-kappa B - antagonists & inhibitors
NF-kappa B - metabolism
Oxidative Stress - drug effects
Oxidative Stress - physiology
Pharmacology/Toxicology
Review
Rheumatology
Signal Transduction - drug effects
Signal Transduction - physiology
Zinc - pharmacology
Zinc - therapeutic use
title Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidant%20and%20anti-inflammatory%20effects%20of%20zinc.%20Zinc-dependent%20NF-%CE%BAB%20signaling&rft.jtitle=Inflammopharmacology&rft.au=Jarosz,%20Magdalena&rft.date=2017-02-01&rft.volume=25&rft.issue=1&rft.spage=11&rft.epage=24&rft.pages=11-24&rft.issn=0925-4692&rft.eissn=1568-5608&rft_id=info:doi/10.1007/s10787-017-0309-4&rft_dat=%3Cproquest_pubme%3E1861466218%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861466218&rft_id=info:pmid/28083748&rfr_iscdi=true