Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells1
Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting th...
Gespeichert in:
Veröffentlicht in: | Translational oncology 2017-02, Vol.10 (2), p.221-228 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | Translational oncology |
container_volume | 10 |
creator | Wu, Y. Linda Maachani, Uday Bhanu Schweitzer, Melanie Singh, Ranjodh Wang, Melinda Chang, Raymond Souweidane, Mark M. |
description | Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG. |
doi_str_mv | 10.1016/j.tranon.2016.12.008 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5302185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5302185</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_53021853</originalsourceid><addsrcrecordid>eNqljMtqwzAUREWhNOnjD7q4PxBHD2zsTSEkbhtMwbTZG8WW4htsKUhyi5f982rRTdddDcOcM4Q8MpowyrL1OQlOGmsSHlvCeEJpfkWWrBDZKuVCLMit92dKM1ZwfkMWPGd5URRiSb53kxxgb3o8YkBrwGqo96Jab6oDSNPBW1mty_cKahn6Lzn7yHZTqzx8zEa5E_qALWxMwDCN1kGptWqDBzSwQ60nr6IQHBofsdpGzih4GdCOErZqGDy7J9daDl49_OYdeXouD9vX1WU6jqprVdTl0FwcjtLNjZXY_F0M9s3JfjapoJzlqfj3wQ-CdG5a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells1</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wu, Y. Linda ; Maachani, Uday Bhanu ; Schweitzer, Melanie ; Singh, Ranjodh ; Wang, Melinda ; Chang, Raymond ; Souweidane, Mark M.</creator><creatorcontrib>Wu, Y. Linda ; Maachani, Uday Bhanu ; Schweitzer, Melanie ; Singh, Ranjodh ; Wang, Melinda ; Chang, Raymond ; Souweidane, Mark M.</creatorcontrib><description>Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.</description><identifier>EISSN: 1936-5233</identifier><identifier>DOI: 10.1016/j.tranon.2016.12.008</identifier><identifier>PMID: 28189993</identifier><language>eng</language><publisher>Neoplasia Press</publisher><subject>Original article</subject><ispartof>Translational oncology, 2017-02, Vol.10 (2), p.221-228</ispartof><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Wu, Y. Linda</creatorcontrib><creatorcontrib>Maachani, Uday Bhanu</creatorcontrib><creatorcontrib>Schweitzer, Melanie</creatorcontrib><creatorcontrib>Singh, Ranjodh</creatorcontrib><creatorcontrib>Wang, Melinda</creatorcontrib><creatorcontrib>Chang, Raymond</creatorcontrib><creatorcontrib>Souweidane, Mark M.</creatorcontrib><title>Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells1</title><title>Translational oncology</title><description>Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.</description><subject>Original article</subject><issn>1936-5233</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqljMtqwzAUREWhNOnjD7q4PxBHD2zsTSEkbhtMwbTZG8WW4htsKUhyi5f982rRTdddDcOcM4Q8MpowyrL1OQlOGmsSHlvCeEJpfkWWrBDZKuVCLMit92dKM1ZwfkMWPGd5URRiSb53kxxgb3o8YkBrwGqo96Jab6oDSNPBW1mty_cKahn6Lzn7yHZTqzx8zEa5E_qALWxMwDCN1kGptWqDBzSwQ60nr6IQHBofsdpGzih4GdCOErZqGDy7J9daDl49_OYdeXouD9vX1WU6jqprVdTl0FwcjtLNjZXY_F0M9s3JfjapoJzlqfj3wQ-CdG5a</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Wu, Y. Linda</creator><creator>Maachani, Uday Bhanu</creator><creator>Schweitzer, Melanie</creator><creator>Singh, Ranjodh</creator><creator>Wang, Melinda</creator><creator>Chang, Raymond</creator><creator>Souweidane, Mark M.</creator><general>Neoplasia Press</general><scope>5PM</scope></search><sort><creationdate>20170209</creationdate><title>Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells1</title><author>Wu, Y. Linda ; Maachani, Uday Bhanu ; Schweitzer, Melanie ; Singh, Ranjodh ; Wang, Melinda ; Chang, Raymond ; Souweidane, Mark M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_53021853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Original article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Y. Linda</creatorcontrib><creatorcontrib>Maachani, Uday Bhanu</creatorcontrib><creatorcontrib>Schweitzer, Melanie</creatorcontrib><creatorcontrib>Singh, Ranjodh</creatorcontrib><creatorcontrib>Wang, Melinda</creatorcontrib><creatorcontrib>Chang, Raymond</creatorcontrib><creatorcontrib>Souweidane, Mark M.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Y. Linda</au><au>Maachani, Uday Bhanu</au><au>Schweitzer, Melanie</au><au>Singh, Ranjodh</au><au>Wang, Melinda</au><au>Chang, Raymond</au><au>Souweidane, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells1</atitle><jtitle>Translational oncology</jtitle><date>2017-02-09</date><risdate>2017</risdate><volume>10</volume><issue>2</issue><spage>221</spage><epage>228</epage><pages>221-228</pages><eissn>1936-5233</eissn><abstract>Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.</abstract><pub>Neoplasia Press</pub><pmid>28189993</pmid><doi>10.1016/j.tranon.2016.12.008</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1936-5233 |
ispartof | Translational oncology, 2017-02, Vol.10 (2), p.221-228 |
issn | 1936-5233 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5302185 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Original article |
title | Dual Inhibition of PI3K/AKT and MEK/ERK Pathways Induces Synergistic Antitumor Effects in Diffuse Intrinsic Pontine Glioma Cells1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Inhibition%20of%20PI3K/AKT%20and%20MEK/ERK%20Pathways%20Induces%20Synergistic%20Antitumor%20Effects%20in%20Diffuse%20Intrinsic%20Pontine%20Glioma%20Cells1&rft.jtitle=Translational%20oncology&rft.au=Wu,%20Y.%20Linda&rft.date=2017-02-09&rft.volume=10&rft.issue=2&rft.spage=221&rft.epage=228&rft.pages=221-228&rft.eissn=1936-5233&rft_id=info:doi/10.1016/j.tranon.2016.12.008&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5302185%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28189993&rfr_iscdi=true |