Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy

Raman spectroscopy, which identifies intrinsic molecular constituents, has a potential for determining myocardial viability under label-free conditions. However, its suitability for evaluating myocardial ischaemia is undetermined. Focusing on cytochromes, i.e., representative molecules reflecting mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-02, Vol.7 (1), p.42401-42401, Article 42401
Hauptverfasser: Ohira, Suguru, Tanaka, Hideo, Harada, Yoshinori, Minamikawa, Takeo, Kumamoto, Yasuaki, Matoba, Satoaki, Yaku, Hitoshi, Takamatsu, Tetsuro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42401
container_issue 1
container_start_page 42401
container_title Scientific reports
container_volume 7
creator Ohira, Suguru
Tanaka, Hideo
Harada, Yoshinori
Minamikawa, Takeo
Kumamoto, Yasuaki
Matoba, Satoaki
Yaku, Hitoshi
Takamatsu, Tetsuro
description Raman spectroscopy, which identifies intrinsic molecular constituents, has a potential for determining myocardial viability under label-free conditions. However, its suitability for evaluating myocardial ischaemia is undetermined. Focusing on cytochromes, i.e., representative molecules reflecting mitochondrial activity, we tested whether Raman spectroscopy is applicable for evaluating myocardial ischaemia especially during early ischaemic phase. We obtained spontaneous Raman spectra of the subepicardial myocardium in the Langendorff-perfused rat heart upon 532-nm excitation before and during the “stopped-flow,” global ischaemia. Semi-quantitative values of the peak intensities at 750 and 1127 cm −1 , which reflect reduced cytochromes c and b, increased immediately and progressively after induction of the stopped flow, indicating progressive reduction of the mitochondrial respiration. Such spectral changes emerged before the loss of 1) mitochondrial membrane potentials measured by the fluorescence intensity of tetramethyl rhodamine ethyl ester or 2) staining of the triphenyl tetrazolium chloride dye in the myocardium. The progressive increases in the Raman peaks by stopped flow were significantly retarded by ischaemic preconditioning. Sequential measurements of the peak intensities at 750 and 1127 cm −1 enabled early detection of the myocardial ischaemia based on the mitochondrial functions. These data suggest that Raman spectroscopy offers the potential to evaluate acute ischaemic heart under label-free conditions.
doi_str_mv 10.1038/srep42401
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5301243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1867547325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-2085ca85a21bf8669361cdcb396fc8a31f902e2815e4ba11f9b13978f475afbb3</originalsourceid><addsrcrecordid>eNplkVtrFTEUhYMottQ--Ack4IsK0-YymcuLIMVL4YBQ9DnsZHY6U2aSMckI598bOfVw1Lzksj9W1t6LkJecXXEmu-sUca1FzfgTci5YrSohhXh6cj4jlyk9sLKU6GvePydnouNdwxt5TsYdGJwrFxHpgBltnoKnwdFlHyzEYYKZTsmOgMsEdPI0j0hXjG5LONAImY4IMVOzp2kNPoPHsCV6Bwv48lL0Ykg2rPsX5JmDOeHl435Bvn_6-O3mS7X7-vn25sOuso0UuRKsUxY6BYIb1zVNLxtuB2tk3zjbgeSuZwKLf4W1AV6uhsu-7VzdKnDGyAvy_qC7bmbBwaLPEWa9xmmBuNcBJv13xU-jvg8_tZKMi1oWgTePAjH82DBlvZQB4DwfWtNlcq2qWylUQV__gz6ELfrSnuY94y1jUrBCvT1QtoyipOWOZjjTvyPUxwgL--rU_ZH8E1gB3h2AVEr-HuPJl_-p_QImKKbM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901700320</pqid></control><display><type>article</type><title>Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ohira, Suguru ; Tanaka, Hideo ; Harada, Yoshinori ; Minamikawa, Takeo ; Kumamoto, Yasuaki ; Matoba, Satoaki ; Yaku, Hitoshi ; Takamatsu, Tetsuro</creator><creatorcontrib>Ohira, Suguru ; Tanaka, Hideo ; Harada, Yoshinori ; Minamikawa, Takeo ; Kumamoto, Yasuaki ; Matoba, Satoaki ; Yaku, Hitoshi ; Takamatsu, Tetsuro</creatorcontrib><description>Raman spectroscopy, which identifies intrinsic molecular constituents, has a potential for determining myocardial viability under label-free conditions. However, its suitability for evaluating myocardial ischaemia is undetermined. Focusing on cytochromes, i.e., representative molecules reflecting mitochondrial activity, we tested whether Raman spectroscopy is applicable for evaluating myocardial ischaemia especially during early ischaemic phase. We obtained spontaneous Raman spectra of the subepicardial myocardium in the Langendorff-perfused rat heart upon 532-nm excitation before and during the “stopped-flow,” global ischaemia. Semi-quantitative values of the peak intensities at 750 and 1127 cm −1 , which reflect reduced cytochromes c and b, increased immediately and progressively after induction of the stopped flow, indicating progressive reduction of the mitochondrial respiration. Such spectral changes emerged before the loss of 1) mitochondrial membrane potentials measured by the fluorescence intensity of tetramethyl rhodamine ethyl ester or 2) staining of the triphenyl tetrazolium chloride dye in the myocardium. The progressive increases in the Raman peaks by stopped flow were significantly retarded by ischaemic preconditioning. Sequential measurements of the peak intensities at 750 and 1127 cm −1 enabled early detection of the myocardial ischaemia based on the mitochondrial functions. These data suggest that Raman spectroscopy offers the potential to evaluate acute ischaemic heart under label-free conditions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep42401</identifier><identifier>PMID: 28186163</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 140/133 ; 631/1647/527/1821 ; 692/4019/592/75 ; Animals ; Chlorides ; Cytochrome ; Cytochromes ; Electron transport ; Heart ; Humanities and Social Sciences ; Ischemia ; Ischemic Preconditioning, Myocardial ; Membrane Potential, Mitochondrial ; Mitochondria ; Mitochondria - metabolism ; multidisciplinary ; Myocardial Ischemia - diagnosis ; Myocardial Ischemia - metabolism ; Myocardial Ischemia - physiopathology ; Myocardium ; Myocardium - metabolism ; Myocardium - pathology ; Oxygen Consumption ; Raman spectroscopy ; Rats ; Rhodamine ; Science ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Time-Lapse Imaging ; Triphenyltetrazolium chloride</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.42401-42401, Article 42401</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-2085ca85a21bf8669361cdcb396fc8a31f902e2815e4ba11f9b13978f475afbb3</citedby><cites>FETCH-LOGICAL-c632t-2085ca85a21bf8669361cdcb396fc8a31f902e2815e4ba11f9b13978f475afbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5301243/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5301243/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28186163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohira, Suguru</creatorcontrib><creatorcontrib>Tanaka, Hideo</creatorcontrib><creatorcontrib>Harada, Yoshinori</creatorcontrib><creatorcontrib>Minamikawa, Takeo</creatorcontrib><creatorcontrib>Kumamoto, Yasuaki</creatorcontrib><creatorcontrib>Matoba, Satoaki</creatorcontrib><creatorcontrib>Yaku, Hitoshi</creatorcontrib><creatorcontrib>Takamatsu, Tetsuro</creatorcontrib><title>Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Raman spectroscopy, which identifies intrinsic molecular constituents, has a potential for determining myocardial viability under label-free conditions. However, its suitability for evaluating myocardial ischaemia is undetermined. Focusing on cytochromes, i.e., representative molecules reflecting mitochondrial activity, we tested whether Raman spectroscopy is applicable for evaluating myocardial ischaemia especially during early ischaemic phase. We obtained spontaneous Raman spectra of the subepicardial myocardium in the Langendorff-perfused rat heart upon 532-nm excitation before and during the “stopped-flow,” global ischaemia. Semi-quantitative values of the peak intensities at 750 and 1127 cm −1 , which reflect reduced cytochromes c and b, increased immediately and progressively after induction of the stopped flow, indicating progressive reduction of the mitochondrial respiration. Such spectral changes emerged before the loss of 1) mitochondrial membrane potentials measured by the fluorescence intensity of tetramethyl rhodamine ethyl ester or 2) staining of the triphenyl tetrazolium chloride dye in the myocardium. The progressive increases in the Raman peaks by stopped flow were significantly retarded by ischaemic preconditioning. Sequential measurements of the peak intensities at 750 and 1127 cm −1 enabled early detection of the myocardial ischaemia based on the mitochondrial functions. These data suggest that Raman spectroscopy offers the potential to evaluate acute ischaemic heart under label-free conditions.</description><subject>14</subject><subject>140/133</subject><subject>631/1647/527/1821</subject><subject>692/4019/592/75</subject><subject>Animals</subject><subject>Chlorides</subject><subject>Cytochrome</subject><subject>Cytochromes</subject><subject>Electron transport</subject><subject>Heart</subject><subject>Humanities and Social Sciences</subject><subject>Ischemia</subject><subject>Ischemic Preconditioning, Myocardial</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Myocardial Ischemia - diagnosis</subject><subject>Myocardial Ischemia - metabolism</subject><subject>Myocardial Ischemia - physiopathology</subject><subject>Myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Oxygen Consumption</subject><subject>Raman spectroscopy</subject><subject>Rats</subject><subject>Rhodamine</subject><subject>Science</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Time-Lapse Imaging</subject><subject>Triphenyltetrazolium chloride</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkVtrFTEUhYMottQ--Ack4IsK0-YymcuLIMVL4YBQ9DnsZHY6U2aSMckI598bOfVw1Lzksj9W1t6LkJecXXEmu-sUca1FzfgTci5YrSohhXh6cj4jlyk9sLKU6GvePydnouNdwxt5TsYdGJwrFxHpgBltnoKnwdFlHyzEYYKZTsmOgMsEdPI0j0hXjG5LONAImY4IMVOzp2kNPoPHsCV6Bwv48lL0Ykg2rPsX5JmDOeHl435Bvn_6-O3mS7X7-vn25sOuso0UuRKsUxY6BYIb1zVNLxtuB2tk3zjbgeSuZwKLf4W1AV6uhsu-7VzdKnDGyAvy_qC7bmbBwaLPEWa9xmmBuNcBJv13xU-jvg8_tZKMi1oWgTePAjH82DBlvZQB4DwfWtNlcq2qWylUQV__gz6ELfrSnuY94y1jUrBCvT1QtoyipOWOZjjTvyPUxwgL--rU_ZH8E1gB3h2AVEr-HuPJl_-p_QImKKbM</recordid><startdate>20170210</startdate><enddate>20170210</enddate><creator>Ohira, Suguru</creator><creator>Tanaka, Hideo</creator><creator>Harada, Yoshinori</creator><creator>Minamikawa, Takeo</creator><creator>Kumamoto, Yasuaki</creator><creator>Matoba, Satoaki</creator><creator>Yaku, Hitoshi</creator><creator>Takamatsu, Tetsuro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170210</creationdate><title>Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy</title><author>Ohira, Suguru ; Tanaka, Hideo ; Harada, Yoshinori ; Minamikawa, Takeo ; Kumamoto, Yasuaki ; Matoba, Satoaki ; Yaku, Hitoshi ; Takamatsu, Tetsuro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-2085ca85a21bf8669361cdcb396fc8a31f902e2815e4ba11f9b13978f475afbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>14</topic><topic>140/133</topic><topic>631/1647/527/1821</topic><topic>692/4019/592/75</topic><topic>Animals</topic><topic>Chlorides</topic><topic>Cytochrome</topic><topic>Cytochromes</topic><topic>Electron transport</topic><topic>Heart</topic><topic>Humanities and Social Sciences</topic><topic>Ischemia</topic><topic>Ischemic Preconditioning, Myocardial</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Myocardial Ischemia - diagnosis</topic><topic>Myocardial Ischemia - metabolism</topic><topic>Myocardial Ischemia - physiopathology</topic><topic>Myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Oxygen Consumption</topic><topic>Raman spectroscopy</topic><topic>Rats</topic><topic>Rhodamine</topic><topic>Science</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Time-Lapse Imaging</topic><topic>Triphenyltetrazolium chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohira, Suguru</creatorcontrib><creatorcontrib>Tanaka, Hideo</creatorcontrib><creatorcontrib>Harada, Yoshinori</creatorcontrib><creatorcontrib>Minamikawa, Takeo</creatorcontrib><creatorcontrib>Kumamoto, Yasuaki</creatorcontrib><creatorcontrib>Matoba, Satoaki</creatorcontrib><creatorcontrib>Yaku, Hitoshi</creatorcontrib><creatorcontrib>Takamatsu, Tetsuro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohira, Suguru</au><au>Tanaka, Hideo</au><au>Harada, Yoshinori</au><au>Minamikawa, Takeo</au><au>Kumamoto, Yasuaki</au><au>Matoba, Satoaki</au><au>Yaku, Hitoshi</au><au>Takamatsu, Tetsuro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-10</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>42401</spage><epage>42401</epage><pages>42401-42401</pages><artnum>42401</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Raman spectroscopy, which identifies intrinsic molecular constituents, has a potential for determining myocardial viability under label-free conditions. However, its suitability for evaluating myocardial ischaemia is undetermined. Focusing on cytochromes, i.e., representative molecules reflecting mitochondrial activity, we tested whether Raman spectroscopy is applicable for evaluating myocardial ischaemia especially during early ischaemic phase. We obtained spontaneous Raman spectra of the subepicardial myocardium in the Langendorff-perfused rat heart upon 532-nm excitation before and during the “stopped-flow,” global ischaemia. Semi-quantitative values of the peak intensities at 750 and 1127 cm −1 , which reflect reduced cytochromes c and b, increased immediately and progressively after induction of the stopped flow, indicating progressive reduction of the mitochondrial respiration. Such spectral changes emerged before the loss of 1) mitochondrial membrane potentials measured by the fluorescence intensity of tetramethyl rhodamine ethyl ester or 2) staining of the triphenyl tetrazolium chloride dye in the myocardium. The progressive increases in the Raman peaks by stopped flow were significantly retarded by ischaemic preconditioning. Sequential measurements of the peak intensities at 750 and 1127 cm −1 enabled early detection of the myocardial ischaemia based on the mitochondrial functions. These data suggest that Raman spectroscopy offers the potential to evaluate acute ischaemic heart under label-free conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28186163</pmid><doi>10.1038/srep42401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-02, Vol.7 (1), p.42401-42401, Article 42401
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5301243
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 14
140/133
631/1647/527/1821
692/4019/592/75
Animals
Chlorides
Cytochrome
Cytochromes
Electron transport
Heart
Humanities and Social Sciences
Ischemia
Ischemic Preconditioning, Myocardial
Membrane Potential, Mitochondrial
Mitochondria
Mitochondria - metabolism
multidisciplinary
Myocardial Ischemia - diagnosis
Myocardial Ischemia - metabolism
Myocardial Ischemia - physiopathology
Myocardium
Myocardium - metabolism
Myocardium - pathology
Oxygen Consumption
Raman spectroscopy
Rats
Rhodamine
Science
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman - methods
Time-Lapse Imaging
Triphenyltetrazolium chloride
title Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-free%20detection%20of%20myocardial%20ischaemia%20in%20the%20perfused%20rat%20heart%20by%20spontaneous%20Raman%20spectroscopy&rft.jtitle=Scientific%20reports&rft.au=Ohira,%20Suguru&rft.date=2017-02-10&rft.volume=7&rft.issue=1&rft.spage=42401&rft.epage=42401&rft.pages=42401-42401&rft.artnum=42401&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep42401&rft_dat=%3Cproquest_pubme%3E1867547325%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901700320&rft_id=info:pmid/28186163&rfr_iscdi=true