On the Mechanics of Transcatheter Aortic Valve Replacement

Transcatheter aortic valves (TAVs) represent the latest advances in prosthetic heart valve technology. TAVs are truly transformational as they bring the benefit of heart valve replacement to patients that would otherwise not be operated on. Nevertheless, like any new device technology, the high expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2017-02, Vol.45 (2), p.310-331
Hauptverfasser: Dasi, Lakshmi P., Hatoum, Hoda, Kheradvar, Arash, Zareian, Ramin, Alavi, S. Hamed, Sun, Wei, Martin, Caitlin, Pham, Thuy, Wang, Qian, Midha, Prem A., Raghav, Vrishank, Yoganathan, Ajit P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 2
container_start_page 310
container_title Annals of biomedical engineering
container_volume 45
creator Dasi, Lakshmi P.
Hatoum, Hoda
Kheradvar, Arash
Zareian, Ramin
Alavi, S. Hamed
Sun, Wei
Martin, Caitlin
Pham, Thuy
Wang, Qian
Midha, Prem A.
Raghav, Vrishank
Yoganathan, Ajit P.
description Transcatheter aortic valves (TAVs) represent the latest advances in prosthetic heart valve technology. TAVs are truly transformational as they bring the benefit of heart valve replacement to patients that would otherwise not be operated on. Nevertheless, like any new device technology, the high expectations are dampened with growing concerns arising from frequent complications that develop in patients, indicating that the technology is far from being mature. Some of the most common complications that plague current TAV devices include malpositioning, crimp-induced leaflet damage, paravalvular leak, thrombosis, conduction abnormalities and prosthesis-patient mismatch. In this article, we provide an in-depth review of the current state-of-the-art pertaining the mechanics of TAVs while highlighting various studies guiding clinicians, regulatory agencies, and next-generation device designers.
doi_str_mv 10.1007/s10439-016-1759-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5300937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877838575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-3f0cf4fd52d62203aa74ac19092216b1036810a86b9acdbc957db829e111d3bc3</originalsourceid><addsrcrecordid>eNqNkU1LHEEQhhtJ0I3JD8hFBnLxMklVV396EETMBxiEYHJtenp63JHZmbV7VvDfp5c1YgIBTwVVT79V_b6MvUf4iAD6U0YQZGtAVaOWtqY9tkCpqbbKqFdsAWChVlaJA_Ym51sARENynx1wbTQBiQU7uRqreRmr7zEs_diHXE1ddZ38mIMv_Tmm6mxKcx-qX364j9WPuB58iKs4zm_Z684POb57rIfs5-eL6_Ov9eXVl2_nZ5d1kKTmmjoInehayVvFOZD3WviAFiznqBoEUgbBG9VYH9omWKnbxnAbEbGlJtAhO93prjfNKrahrE5-cOvUr3x6cJPv3d-TsV-6m-neSSoGkC4Cx48CabrbxDy7VZ9DHAY_xmmTHRojEKQw9AJUa0NGavkCVHBpjRS2oB_-QW-nTRqLaYVS2hKh5YXCHRXSlHOK3dMXEdw2b7fL25W83TZvt7336Lk3Ty_-BFwAvgNyGY03MT1b_V_V3ytns9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867933192</pqid></control><display><type>article</type><title>On the Mechanics of Transcatheter Aortic Valve Replacement</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dasi, Lakshmi P. ; Hatoum, Hoda ; Kheradvar, Arash ; Zareian, Ramin ; Alavi, S. Hamed ; Sun, Wei ; Martin, Caitlin ; Pham, Thuy ; Wang, Qian ; Midha, Prem A. ; Raghav, Vrishank ; Yoganathan, Ajit P.</creator><creatorcontrib>Dasi, Lakshmi P. ; Hatoum, Hoda ; Kheradvar, Arash ; Zareian, Ramin ; Alavi, S. Hamed ; Sun, Wei ; Martin, Caitlin ; Pham, Thuy ; Wang, Qian ; Midha, Prem A. ; Raghav, Vrishank ; Yoganathan, Ajit P.</creatorcontrib><description>Transcatheter aortic valves (TAVs) represent the latest advances in prosthetic heart valve technology. TAVs are truly transformational as they bring the benefit of heart valve replacement to patients that would otherwise not be operated on. Nevertheless, like any new device technology, the high expectations are dampened with growing concerns arising from frequent complications that develop in patients, indicating that the technology is far from being mature. Some of the most common complications that plague current TAV devices include malpositioning, crimp-induced leaflet damage, paravalvular leak, thrombosis, conduction abnormalities and prosthesis-patient mismatch. In this article, we provide an in-depth review of the current state-of-the-art pertaining the mechanics of TAVs while highlighting various studies guiding clinicians, regulatory agencies, and next-generation device designers.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-016-1759-3</identifier><identifier>PMID: 27873034</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abnormalities ; Animals ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Classical Mechanics ; Devices ; Heart Valve Prosthesis ; Heart valves ; Humans ; Patients ; Prosthesis Design - methods ; Prosthetics ; Regulatory agencies ; State of the art ; The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair ; Thromboembolism ; Transcatheter Aortic Valve Replacement - adverse effects ; Transcatheter Aortic Valve Replacement - instrumentation ; Transcatheter Aortic Valve Replacement - methods ; Valves</subject><ispartof>Annals of biomedical engineering, 2017-02, Vol.45 (2), p.310-331</ispartof><rights>Biomedical Engineering Society 2016</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-3f0cf4fd52d62203aa74ac19092216b1036810a86b9acdbc957db829e111d3bc3</citedby><cites>FETCH-LOGICAL-c536t-3f0cf4fd52d62203aa74ac19092216b1036810a86b9acdbc957db829e111d3bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-016-1759-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-016-1759-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27873034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dasi, Lakshmi P.</creatorcontrib><creatorcontrib>Hatoum, Hoda</creatorcontrib><creatorcontrib>Kheradvar, Arash</creatorcontrib><creatorcontrib>Zareian, Ramin</creatorcontrib><creatorcontrib>Alavi, S. Hamed</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Martin, Caitlin</creatorcontrib><creatorcontrib>Pham, Thuy</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Midha, Prem A.</creatorcontrib><creatorcontrib>Raghav, Vrishank</creatorcontrib><creatorcontrib>Yoganathan, Ajit P.</creatorcontrib><title>On the Mechanics of Transcatheter Aortic Valve Replacement</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Transcatheter aortic valves (TAVs) represent the latest advances in prosthetic heart valve technology. TAVs are truly transformational as they bring the benefit of heart valve replacement to patients that would otherwise not be operated on. Nevertheless, like any new device technology, the high expectations are dampened with growing concerns arising from frequent complications that develop in patients, indicating that the technology is far from being mature. Some of the most common complications that plague current TAV devices include malpositioning, crimp-induced leaflet damage, paravalvular leak, thrombosis, conduction abnormalities and prosthesis-patient mismatch. In this article, we provide an in-depth review of the current state-of-the-art pertaining the mechanics of TAVs while highlighting various studies guiding clinicians, regulatory agencies, and next-generation device designers.</description><subject>Abnormalities</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Classical Mechanics</subject><subject>Devices</subject><subject>Heart Valve Prosthesis</subject><subject>Heart valves</subject><subject>Humans</subject><subject>Patients</subject><subject>Prosthesis Design - methods</subject><subject>Prosthetics</subject><subject>Regulatory agencies</subject><subject>State of the art</subject><subject>The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair</subject><subject>Thromboembolism</subject><subject>Transcatheter Aortic Valve Replacement - adverse effects</subject><subject>Transcatheter Aortic Valve Replacement - instrumentation</subject><subject>Transcatheter Aortic Valve Replacement - methods</subject><subject>Valves</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LHEEQhhtJ0I3JD8hFBnLxMklVV396EETMBxiEYHJtenp63JHZmbV7VvDfp5c1YgIBTwVVT79V_b6MvUf4iAD6U0YQZGtAVaOWtqY9tkCpqbbKqFdsAWChVlaJA_Ym51sARENynx1wbTQBiQU7uRqreRmr7zEs_diHXE1ddZ38mIMv_Tmm6mxKcx-qX364j9WPuB58iKs4zm_Z684POb57rIfs5-eL6_Ov9eXVl2_nZ5d1kKTmmjoInehayVvFOZD3WviAFiznqBoEUgbBG9VYH9omWKnbxnAbEbGlJtAhO93prjfNKrahrE5-cOvUr3x6cJPv3d-TsV-6m-neSSoGkC4Cx48CabrbxDy7VZ9DHAY_xmmTHRojEKQw9AJUa0NGavkCVHBpjRS2oB_-QW-nTRqLaYVS2hKh5YXCHRXSlHOK3dMXEdw2b7fL25W83TZvt7336Lk3Ty_-BFwAvgNyGY03MT1b_V_V3ytns9I</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Dasi, Lakshmi P.</creator><creator>Hatoum, Hoda</creator><creator>Kheradvar, Arash</creator><creator>Zareian, Ramin</creator><creator>Alavi, S. Hamed</creator><creator>Sun, Wei</creator><creator>Martin, Caitlin</creator><creator>Pham, Thuy</creator><creator>Wang, Qian</creator><creator>Midha, Prem A.</creator><creator>Raghav, Vrishank</creator><creator>Yoganathan, Ajit P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170201</creationdate><title>On the Mechanics of Transcatheter Aortic Valve Replacement</title><author>Dasi, Lakshmi P. ; Hatoum, Hoda ; Kheradvar, Arash ; Zareian, Ramin ; Alavi, S. Hamed ; Sun, Wei ; Martin, Caitlin ; Pham, Thuy ; Wang, Qian ; Midha, Prem A. ; Raghav, Vrishank ; Yoganathan, Ajit P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-3f0cf4fd52d62203aa74ac19092216b1036810a86b9acdbc957db829e111d3bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abnormalities</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Classical Mechanics</topic><topic>Devices</topic><topic>Heart Valve Prosthesis</topic><topic>Heart valves</topic><topic>Humans</topic><topic>Patients</topic><topic>Prosthesis Design - methods</topic><topic>Prosthetics</topic><topic>Regulatory agencies</topic><topic>State of the art</topic><topic>The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair</topic><topic>Thromboembolism</topic><topic>Transcatheter Aortic Valve Replacement - adverse effects</topic><topic>Transcatheter Aortic Valve Replacement - instrumentation</topic><topic>Transcatheter Aortic Valve Replacement - methods</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasi, Lakshmi P.</creatorcontrib><creatorcontrib>Hatoum, Hoda</creatorcontrib><creatorcontrib>Kheradvar, Arash</creatorcontrib><creatorcontrib>Zareian, Ramin</creatorcontrib><creatorcontrib>Alavi, S. Hamed</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Martin, Caitlin</creatorcontrib><creatorcontrib>Pham, Thuy</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Midha, Prem A.</creatorcontrib><creatorcontrib>Raghav, Vrishank</creatorcontrib><creatorcontrib>Yoganathan, Ajit P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasi, Lakshmi P.</au><au>Hatoum, Hoda</au><au>Kheradvar, Arash</au><au>Zareian, Ramin</au><au>Alavi, S. Hamed</au><au>Sun, Wei</au><au>Martin, Caitlin</au><au>Pham, Thuy</au><au>Wang, Qian</au><au>Midha, Prem A.</au><au>Raghav, Vrishank</au><au>Yoganathan, Ajit P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Mechanics of Transcatheter Aortic Valve Replacement</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>45</volume><issue>2</issue><spage>310</spage><epage>331</epage><pages>310-331</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Transcatheter aortic valves (TAVs) represent the latest advances in prosthetic heart valve technology. TAVs are truly transformational as they bring the benefit of heart valve replacement to patients that would otherwise not be operated on. Nevertheless, like any new device technology, the high expectations are dampened with growing concerns arising from frequent complications that develop in patients, indicating that the technology is far from being mature. Some of the most common complications that plague current TAV devices include malpositioning, crimp-induced leaflet damage, paravalvular leak, thrombosis, conduction abnormalities and prosthesis-patient mismatch. In this article, we provide an in-depth review of the current state-of-the-art pertaining the mechanics of TAVs while highlighting various studies guiding clinicians, regulatory agencies, and next-generation device designers.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27873034</pmid><doi>10.1007/s10439-016-1759-3</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2017-02, Vol.45 (2), p.310-331
issn 0090-6964
1573-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5300937
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abnormalities
Animals
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Devices
Heart Valve Prosthesis
Heart valves
Humans
Patients
Prosthesis Design - methods
Prosthetics
Regulatory agencies
State of the art
The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair
Thromboembolism
Transcatheter Aortic Valve Replacement - adverse effects
Transcatheter Aortic Valve Replacement - instrumentation
Transcatheter Aortic Valve Replacement - methods
Valves
title On the Mechanics of Transcatheter Aortic Valve Replacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Mechanics%20of%20Transcatheter%20Aortic%20Valve%20Replacement&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Dasi,%20Lakshmi%20P.&rft.date=2017-02-01&rft.volume=45&rft.issue=2&rft.spage=310&rft.epage=331&rft.pages=310-331&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-016-1759-3&rft_dat=%3Cproquest_pubme%3E1877838575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867933192&rft_id=info:pmid/27873034&rfr_iscdi=true