Small‐Molecule‐Induced and Cooperative Enzyme Assembly on a 14‐3‐3 Scaffold
Scaffold proteins regulate cell signalling by promoting the proximity of putative interaction partners. Although they are frequently applied in cellular settings, fundamental understanding of them in terms of, amongst other factors, quantitative parameters has been lagging behind. Here we present a...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2017-02, Vol.18 (3), p.331-335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 3 |
container_start_page | 331 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 18 |
creator | den Hamer, Anniek Lemmens, Lenne J. M. Nijenhuis, Minke A. D. Ottmann, Christian Merkx, Maarten de Greef, Tom F. A. Brunsveld, Luc |
description | Scaffold proteins regulate cell signalling by promoting the proximity of putative interaction partners. Although they are frequently applied in cellular settings, fundamental understanding of them in terms of, amongst other factors, quantitative parameters has been lagging behind. Here we present a scaffold protein platform that is based on the native 14‐3‐3 dimeric protein and is controllable through the action of a small‐molecule compound, thus permitting study in an in vitro setting and mathematical description. Robust small‐molecule regulation of caspase‐9 activity through induced dimerisation on the 14‐3‐3 scaffold was demonstrated. The individual parameters of this system were precisely determined and used to develop a mathematical model of the scaffolding concept. This model was used to elucidate the strong cooperativity of the enzyme activation mediated by the 14‐3‐3 scaffold. This work provides an entry point for the long‐needed quantitative insights into scaffold protein functioning and paves the way for the optimal use of reengineered 14‐3‐3 proteins as chemically inducible scaffolds in synthetic systems.
Controlling protein dimerisation: Engineered 14‐3‐3 scaffold proteins enable small‐molecule‐controlled protein dimerisation and enzyme activation. A combination of mathematical modelling and experiments reveal the combinatorial inhibition profile of the system and underlying strong cooperativity. |
doi_str_mv | 10.1002/cbic.201600631 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5299510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4309757311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6041-8e392935574e9796008643a6a95b6c3ab959f02e3dad40a4e11445e00c776dc03</originalsourceid><addsrcrecordid>eNqFkc1u1DAURq0KREvLtssqEptuZnr9EzveIJWowEhFXQxdW45zA6mceIgnRdMVj8Az8iQ4mulAu2Fh-Uo-98ifPkJOKcwpALtwVevmDKgEkJwekCMquJ4pyfmL3SwYU4fkdYx3AKAT9IocMlVoxQt1RJbLznr_--evz8GjGz2mcdHXo8M6s32dlSGscLDr9h6zq_5h02F2GSN2ld9koc9sRkXa4NPJls42TfD1CXnZWB_xze4-Jrcfrr6Un2bXNx8X5eX1zEkQdFYg10zzPFcCtdIpQSEFt9LqvJKO20rnugGGvLa1ACuQUiFyBHBKydoBPybvtt7VWHVYO-zXg_VmNbSdHTYm2NY8fenbb-ZruDc50zqnk-B8JxjC9xHj2nRtdOi97TGM0dBCFpyBViyhb5-hd2Ec-hRvolIMkcNEzbeUG0KMAzb7z1AwU19m6svs-0oLZ_9G2OOPBSVAb4EfrcfNf3SmfL8o_8r_AMV3o6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862934502</pqid></control><display><type>article</type><title>Small‐Molecule‐Induced and Cooperative Enzyme Assembly on a 14‐3‐3 Scaffold</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>den Hamer, Anniek ; Lemmens, Lenne J. M. ; Nijenhuis, Minke A. D. ; Ottmann, Christian ; Merkx, Maarten ; de Greef, Tom F. A. ; Brunsveld, Luc</creator><creatorcontrib>den Hamer, Anniek ; Lemmens, Lenne J. M. ; Nijenhuis, Minke A. D. ; Ottmann, Christian ; Merkx, Maarten ; de Greef, Tom F. A. ; Brunsveld, Luc</creatorcontrib><description>Scaffold proteins regulate cell signalling by promoting the proximity of putative interaction partners. Although they are frequently applied in cellular settings, fundamental understanding of them in terms of, amongst other factors, quantitative parameters has been lagging behind. Here we present a scaffold protein platform that is based on the native 14‐3‐3 dimeric protein and is controllable through the action of a small‐molecule compound, thus permitting study in an in vitro setting and mathematical description. Robust small‐molecule regulation of caspase‐9 activity through induced dimerisation on the 14‐3‐3 scaffold was demonstrated. The individual parameters of this system were precisely determined and used to develop a mathematical model of the scaffolding concept. This model was used to elucidate the strong cooperativity of the enzyme activation mediated by the 14‐3‐3 scaffold. This work provides an entry point for the long‐needed quantitative insights into scaffold protein functioning and paves the way for the optimal use of reengineered 14‐3‐3 proteins as chemically inducible scaffolds in synthetic systems.
Controlling protein dimerisation: Engineered 14‐3‐3 scaffold proteins enable small‐molecule‐controlled protein dimerisation and enzyme activation. A combination of mathematical modelling and experiments reveal the combinatorial inhibition profile of the system and underlying strong cooperativity.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201600631</identifier><identifier>PMID: 27897387</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>14-3-3 proteins ; 14-3-3 Proteins - chemistry ; 14-3-3 Proteins - genetics ; 14-3-3 Proteins - metabolism ; Caspase 3 - metabolism ; Caspase 9 - chemistry ; Caspase 9 - genetics ; Caspase 9 - metabolism ; combinatorial inhibition ; cooperative effects ; Dimerization ; Enzyme Activation ; Enzymes ; Mutagenesis, Site-Directed ; Protein Engineering ; protein scaffolds ; Protein Structure, Quaternary ; Proteins ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - isolation & purification ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - metabolism ; Substrate Specificity</subject><ispartof>Chembiochem : a European journal of chemical biology, 2017-02, Vol.18 (3), p.331-335</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6041-8e392935574e9796008643a6a95b6c3ab959f02e3dad40a4e11445e00c776dc03</citedby><cites>FETCH-LOGICAL-c6041-8e392935574e9796008643a6a95b6c3ab959f02e3dad40a4e11445e00c776dc03</cites><orcidid>0000-0001-5675-511X ; 0000-0001-9484-3882 ; 0000-0002-9338-284X ; 0000-0001-7315-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201600631$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201600631$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27897387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>den Hamer, Anniek</creatorcontrib><creatorcontrib>Lemmens, Lenne J. M.</creatorcontrib><creatorcontrib>Nijenhuis, Minke A. D.</creatorcontrib><creatorcontrib>Ottmann, Christian</creatorcontrib><creatorcontrib>Merkx, Maarten</creatorcontrib><creatorcontrib>de Greef, Tom F. A.</creatorcontrib><creatorcontrib>Brunsveld, Luc</creatorcontrib><title>Small‐Molecule‐Induced and Cooperative Enzyme Assembly on a 14‐3‐3 Scaffold</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Scaffold proteins regulate cell signalling by promoting the proximity of putative interaction partners. Although they are frequently applied in cellular settings, fundamental understanding of them in terms of, amongst other factors, quantitative parameters has been lagging behind. Here we present a scaffold protein platform that is based on the native 14‐3‐3 dimeric protein and is controllable through the action of a small‐molecule compound, thus permitting study in an in vitro setting and mathematical description. Robust small‐molecule regulation of caspase‐9 activity through induced dimerisation on the 14‐3‐3 scaffold was demonstrated. The individual parameters of this system were precisely determined and used to develop a mathematical model of the scaffolding concept. This model was used to elucidate the strong cooperativity of the enzyme activation mediated by the 14‐3‐3 scaffold. This work provides an entry point for the long‐needed quantitative insights into scaffold protein functioning and paves the way for the optimal use of reengineered 14‐3‐3 proteins as chemically inducible scaffolds in synthetic systems.
Controlling protein dimerisation: Engineered 14‐3‐3 scaffold proteins enable small‐molecule‐controlled protein dimerisation and enzyme activation. A combination of mathematical modelling and experiments reveal the combinatorial inhibition profile of the system and underlying strong cooperativity.</description><subject>14-3-3 proteins</subject><subject>14-3-3 Proteins - chemistry</subject><subject>14-3-3 Proteins - genetics</subject><subject>14-3-3 Proteins - metabolism</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 9 - chemistry</subject><subject>Caspase 9 - genetics</subject><subject>Caspase 9 - metabolism</subject><subject>combinatorial inhibition</subject><subject>cooperative effects</subject><subject>Dimerization</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Engineering</subject><subject>protein scaffolds</subject><subject>Protein Structure, Quaternary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - isolation & purification</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - metabolism</subject><subject>Substrate Specificity</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURq0KREvLtssqEptuZnr9EzveIJWowEhFXQxdW45zA6mceIgnRdMVj8Az8iQ4mulAu2Fh-Uo-98ifPkJOKcwpALtwVevmDKgEkJwekCMquJ4pyfmL3SwYU4fkdYx3AKAT9IocMlVoxQt1RJbLznr_--evz8GjGz2mcdHXo8M6s32dlSGscLDr9h6zq_5h02F2GSN2ld9koc9sRkXa4NPJls42TfD1CXnZWB_xze4-Jrcfrr6Un2bXNx8X5eX1zEkQdFYg10zzPFcCtdIpQSEFt9LqvJKO20rnugGGvLa1ACuQUiFyBHBKydoBPybvtt7VWHVYO-zXg_VmNbSdHTYm2NY8fenbb-ZruDc50zqnk-B8JxjC9xHj2nRtdOi97TGM0dBCFpyBViyhb5-hd2Ec-hRvolIMkcNEzbeUG0KMAzb7z1AwU19m6svs-0oLZ_9G2OOPBSVAb4EfrcfNf3SmfL8o_8r_AMV3o6Y</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>den Hamer, Anniek</creator><creator>Lemmens, Lenne J. M.</creator><creator>Nijenhuis, Minke A. D.</creator><creator>Ottmann, Christian</creator><creator>Merkx, Maarten</creator><creator>de Greef, Tom F. A.</creator><creator>Brunsveld, Luc</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5675-511X</orcidid><orcidid>https://orcid.org/0000-0001-9484-3882</orcidid><orcidid>https://orcid.org/0000-0002-9338-284X</orcidid><orcidid>https://orcid.org/0000-0001-7315-0315</orcidid></search><sort><creationdate>20170201</creationdate><title>Small‐Molecule‐Induced and Cooperative Enzyme Assembly on a 14‐3‐3 Scaffold</title><author>den Hamer, Anniek ; Lemmens, Lenne J. M. ; Nijenhuis, Minke A. D. ; Ottmann, Christian ; Merkx, Maarten ; de Greef, Tom F. A. ; Brunsveld, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6041-8e392935574e9796008643a6a95b6c3ab959f02e3dad40a4e11445e00c776dc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>14-3-3 proteins</topic><topic>14-3-3 Proteins - chemistry</topic><topic>14-3-3 Proteins - genetics</topic><topic>14-3-3 Proteins - metabolism</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 9 - chemistry</topic><topic>Caspase 9 - genetics</topic><topic>Caspase 9 - metabolism</topic><topic>combinatorial inhibition</topic><topic>cooperative effects</topic><topic>Dimerization</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Engineering</topic><topic>protein scaffolds</topic><topic>Protein Structure, Quaternary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - isolation & purification</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Hamer, Anniek</creatorcontrib><creatorcontrib>Lemmens, Lenne J. M.</creatorcontrib><creatorcontrib>Nijenhuis, Minke A. D.</creatorcontrib><creatorcontrib>Ottmann, Christian</creatorcontrib><creatorcontrib>Merkx, Maarten</creatorcontrib><creatorcontrib>de Greef, Tom F. A.</creatorcontrib><creatorcontrib>Brunsveld, Luc</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Hamer, Anniek</au><au>Lemmens, Lenne J. M.</au><au>Nijenhuis, Minke A. D.</au><au>Ottmann, Christian</au><au>Merkx, Maarten</au><au>de Greef, Tom F. A.</au><au>Brunsveld, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small‐Molecule‐Induced and Cooperative Enzyme Assembly on a 14‐3‐3 Scaffold</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>18</volume><issue>3</issue><spage>331</spage><epage>335</epage><pages>331-335</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Scaffold proteins regulate cell signalling by promoting the proximity of putative interaction partners. Although they are frequently applied in cellular settings, fundamental understanding of them in terms of, amongst other factors, quantitative parameters has been lagging behind. Here we present a scaffold protein platform that is based on the native 14‐3‐3 dimeric protein and is controllable through the action of a small‐molecule compound, thus permitting study in an in vitro setting and mathematical description. Robust small‐molecule regulation of caspase‐9 activity through induced dimerisation on the 14‐3‐3 scaffold was demonstrated. The individual parameters of this system were precisely determined and used to develop a mathematical model of the scaffolding concept. This model was used to elucidate the strong cooperativity of the enzyme activation mediated by the 14‐3‐3 scaffold. This work provides an entry point for the long‐needed quantitative insights into scaffold protein functioning and paves the way for the optimal use of reengineered 14‐3‐3 proteins as chemically inducible scaffolds in synthetic systems.
Controlling protein dimerisation: Engineered 14‐3‐3 scaffold proteins enable small‐molecule‐controlled protein dimerisation and enzyme activation. A combination of mathematical modelling and experiments reveal the combinatorial inhibition profile of the system and underlying strong cooperativity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27897387</pmid><doi>10.1002/cbic.201600631</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5675-511X</orcidid><orcidid>https://orcid.org/0000-0001-9484-3882</orcidid><orcidid>https://orcid.org/0000-0002-9338-284X</orcidid><orcidid>https://orcid.org/0000-0001-7315-0315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2017-02, Vol.18 (3), p.331-335 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5299510 |
source | MEDLINE; Wiley Online Library |
subjects | 14-3-3 proteins 14-3-3 Proteins - chemistry 14-3-3 Proteins - genetics 14-3-3 Proteins - metabolism Caspase 3 - metabolism Caspase 9 - chemistry Caspase 9 - genetics Caspase 9 - metabolism combinatorial inhibition cooperative effects Dimerization Enzyme Activation Enzymes Mutagenesis, Site-Directed Protein Engineering protein scaffolds Protein Structure, Quaternary Proteins Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - isolation & purification Small Molecule Libraries - chemistry Small Molecule Libraries - metabolism Substrate Specificity |
title | Small‐Molecule‐Induced and Cooperative Enzyme Assembly on a 14‐3‐3 Scaffold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%E2%80%90Molecule%E2%80%90Induced%20and%20Cooperative%20Enzyme%20Assembly%20on%20a%2014%E2%80%903%E2%80%903%20Scaffold&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=den%E2%80%85Hamer,%20Anniek&rft.date=2017-02-01&rft.volume=18&rft.issue=3&rft.spage=331&rft.epage=335&rft.pages=331-335&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201600631&rft_dat=%3Cproquest_pubme%3E4309757311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862934502&rft_id=info:pmid/27897387&rfr_iscdi=true |