Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks
Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution o...
Gespeichert in:
Veröffentlicht in: | Frontiers in computational neuroscience 2017-02, Vol.11, p.7-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 7 |
container_title | Frontiers in computational neuroscience |
container_volume | 11 |
creator | Güçlü, Umut van Gerven, Marcel A J |
description | Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution of features to responses (response model). While there has been extensive work on developing better feature models, the work on developing better response models has been rather limited. Here, we investigate the extent to which recurrent neural network models can use their internal memories for nonlinear processing of arbitrary feature sequences to predict feature-evoked response sequences as measured by functional magnetic resonance imaging. We show that the proposed recurrent neural network models can significantly outperform established response models by accurately estimating long-term dependencies that drive hemodynamic responses. The results open a new window into modeling the dynamics of brain activity in response to sensory stimuli. |
doi_str_mv | 10.3389/fncom.2017.00007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5299026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872579309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-216b6391a0ecc6e04ae219b49af6d1aaf72214e079b65f79c4f9a1d7c2fb41643</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa2qqITAvafKUi-9JNjjXXt9qUTpB0hpkRCcLa9jE6e7Nti7oPz3mK8ImMuMNG-e3uiH0GdK5ow18tAFE_s5ECrmpJT4gCaUc5jVtGk-vpp30V7Oa0I48Jp8QrvQAAMhxQQt_sal7Xy4wsPK4p-boHtvMo4On4y9DvhH0j7gIzP4Wz9s8J0fVvjcmjElGwb8z45Jd6UNdzH9z_tox-ku24PnPkWXv39dHJ_MFmd_To-PFjNTQTXMgPKWM0k1scZwSyptgcq2ktrxJdXaCQBaWSJky2snpKmc1HQpDLi2orxiU_T9yfd6bHu7NCVKiaGuk-912qiovXq7CX6lruKtqkFKArwYfHs2SPFmtHlQvc_Gdp0ONo5Z0UZALSQjski_vpOu45hCeU8BNIzJmgAtKvKkMinmnKzbhqFEPaBSj6jUAyr1iKqcfHn9xPbghQ27B7ilkLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283395021</pqid></control><display><type>article</type><title>Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Güçlü, Umut ; van Gerven, Marcel A J</creator><creatorcontrib>Güçlü, Umut ; van Gerven, Marcel A J</creatorcontrib><description>Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution of features to responses (response model). While there has been extensive work on developing better feature models, the work on developing better response models has been rather limited. Here, we investigate the extent to which recurrent neural network models can use their internal memories for nonlinear processing of arbitrary feature sequences to predict feature-evoked response sequences as measured by functional magnetic resonance imaging. We show that the proposed recurrent neural network models can significantly outperform established response models by accurately estimating long-term dependencies that drive hemodynamic responses. The results open a new window into modeling the dynamics of brain activity in response to sensory stimuli.</description><identifier>ISSN: 1662-5188</identifier><identifier>EISSN: 1662-5188</identifier><identifier>DOI: 10.3389/fncom.2017.00007</identifier><identifier>PMID: 28232797</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Artificial intelligence ; Brain ; Brain mapping ; Functional magnetic resonance imaging ; Machine learning ; Memory ; Neural networks ; Neuroimaging ; Neuroscience ; Noise ; Semantics ; Sensory stimuli ; Software ; Time series</subject><ispartof>Frontiers in computational neuroscience, 2017-02, Vol.11, p.7-7</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2017 Güçlü and van Gerven. 2017 Güçlü and van Gerven</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-216b6391a0ecc6e04ae219b49af6d1aaf72214e079b65f79c4f9a1d7c2fb41643</citedby><cites>FETCH-LOGICAL-c424t-216b6391a0ecc6e04ae219b49af6d1aaf72214e079b65f79c4f9a1d7c2fb41643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299026/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299026/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28232797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Güçlü, Umut</creatorcontrib><creatorcontrib>van Gerven, Marcel A J</creatorcontrib><title>Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks</title><title>Frontiers in computational neuroscience</title><addtitle>Front Comput Neurosci</addtitle><description>Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution of features to responses (response model). While there has been extensive work on developing better feature models, the work on developing better response models has been rather limited. Here, we investigate the extent to which recurrent neural network models can use their internal memories for nonlinear processing of arbitrary feature sequences to predict feature-evoked response sequences as measured by functional magnetic resonance imaging. We show that the proposed recurrent neural network models can significantly outperform established response models by accurately estimating long-term dependencies that drive hemodynamic responses. The results open a new window into modeling the dynamics of brain activity in response to sensory stimuli.</description><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Functional magnetic resonance imaging</subject><subject>Machine learning</subject><subject>Memory</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Noise</subject><subject>Semantics</subject><subject>Sensory stimuli</subject><subject>Software</subject><subject>Time series</subject><issn>1662-5188</issn><issn>1662-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1PGzEQxa2qqITAvafKUi-9JNjjXXt9qUTpB0hpkRCcLa9jE6e7Nti7oPz3mK8ImMuMNG-e3uiH0GdK5ow18tAFE_s5ECrmpJT4gCaUc5jVtGk-vpp30V7Oa0I48Jp8QrvQAAMhxQQt_sal7Xy4wsPK4p-boHtvMo4On4y9DvhH0j7gIzP4Wz9s8J0fVvjcmjElGwb8z45Jd6UNdzH9z_tox-ku24PnPkWXv39dHJ_MFmd_To-PFjNTQTXMgPKWM0k1scZwSyptgcq2ktrxJdXaCQBaWSJky2snpKmc1HQpDLi2orxiU_T9yfd6bHu7NCVKiaGuk-912qiovXq7CX6lruKtqkFKArwYfHs2SPFmtHlQvc_Gdp0ONo5Z0UZALSQjski_vpOu45hCeU8BNIzJmgAtKvKkMinmnKzbhqFEPaBSj6jUAyr1iKqcfHn9xPbghQ27B7ilkLk</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Güçlü, Umut</creator><creator>van Gerven, Marcel A J</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170209</creationdate><title>Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks</title><author>Güçlü, Umut ; van Gerven, Marcel A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-216b6391a0ecc6e04ae219b49af6d1aaf72214e079b65f79c4f9a1d7c2fb41643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Functional magnetic resonance imaging</topic><topic>Machine learning</topic><topic>Memory</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Noise</topic><topic>Semantics</topic><topic>Sensory stimuli</topic><topic>Software</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Güçlü, Umut</creatorcontrib><creatorcontrib>van Gerven, Marcel A J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güçlü, Umut</au><au>van Gerven, Marcel A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks</atitle><jtitle>Frontiers in computational neuroscience</jtitle><addtitle>Front Comput Neurosci</addtitle><date>2017-02-09</date><risdate>2017</risdate><volume>11</volume><spage>7</spage><epage>7</epage><pages>7-7</pages><issn>1662-5188</issn><eissn>1662-5188</eissn><abstract>Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution of features to responses (response model). While there has been extensive work on developing better feature models, the work on developing better response models has been rather limited. Here, we investigate the extent to which recurrent neural network models can use their internal memories for nonlinear processing of arbitrary feature sequences to predict feature-evoked response sequences as measured by functional magnetic resonance imaging. We show that the proposed recurrent neural network models can significantly outperform established response models by accurately estimating long-term dependencies that drive hemodynamic responses. The results open a new window into modeling the dynamics of brain activity in response to sensory stimuli.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>28232797</pmid><doi>10.3389/fncom.2017.00007</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5188 |
ispartof | Frontiers in computational neuroscience, 2017-02, Vol.11, p.7-7 |
issn | 1662-5188 1662-5188 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5299026 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Artificial intelligence Brain Brain mapping Functional magnetic resonance imaging Machine learning Memory Neural networks Neuroimaging Neuroscience Noise Semantics Sensory stimuli Software Time series |
title | Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Dynamics%20of%20Human%20Brain%20Activity%20with%20Recurrent%20Neural%20Networks&rft.jtitle=Frontiers%20in%20computational%20neuroscience&rft.au=G%C3%BC%C3%A7l%C3%BC,%20Umut&rft.date=2017-02-09&rft.volume=11&rft.spage=7&rft.epage=7&rft.pages=7-7&rft.issn=1662-5188&rft.eissn=1662-5188&rft_id=info:doi/10.3389/fncom.2017.00007&rft_dat=%3Cproquest_pubme%3E1872579309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283395021&rft_id=info:pmid/28232797&rfr_iscdi=true |