Position-dependent termination and widespread obligatory frameshifting in Euplotes translation

Large-scale sequencing approaches reveal that the genetic code of Euplotes ciliates supports widespread ribosomal frameshifting at stop codons, and that additional mechanisms are required for efficient translation termination. The ribosome can change its reading frame during translation in a process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2017-01, Vol.24 (1), p.61-68
Hauptverfasser: Lobanov, Alexei V, Heaphy, Stephen M, Turanov, Anton A, Gerashchenko, Maxim V, Pucciarelli, Sandra, Devaraj, Raghul R, Xie, Fang, Petyuk, Vladislav A, Smith, Richard D, Klobutcher, Lawrence A, Atkins, John F, Miceli, Cristina, Hatfield, Dolph L, Baranov, Pavel V, Gladyshev, Vadim N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 61
container_title Nature structural & molecular biology
container_volume 24
creator Lobanov, Alexei V
Heaphy, Stephen M
Turanov, Anton A
Gerashchenko, Maxim V
Pucciarelli, Sandra
Devaraj, Raghul R
Xie, Fang
Petyuk, Vladislav A
Smith, Richard D
Klobutcher, Lawrence A
Atkins, John F
Miceli, Cristina
Hatfield, Dolph L
Baranov, Pavel V
Gladyshev, Vadim N
description Large-scale sequencing approaches reveal that the genetic code of Euplotes ciliates supports widespread ribosomal frameshifting at stop codons, and that additional mechanisms are required for efficient translation termination. The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3′ mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a 'stop codon' is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.
doi_str_mv 10.1038/nsmb.3330
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5295771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476586060</galeid><sourcerecordid>A476586060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-7d0f396f03557fedf34348d63dcff559b2c980255a0611e5e9a92f4cd69077503</originalsourceid><addsrcrecordid>eNqNkl1vFCEUhidGY2v1wj9gJnqjJrvCMAxwY9I0VZs00fhxK2HhMEszA1tg1P57GbeuXe2F4QJyeM57OIe3qh5jtMSI8Fc-jaslIQTdqQ4xbelCCE7v7s6CHFQPUrpAqKGUkfvVQcM4Q5y0h9XXDyG57IJfGNiAN-BznSGOzqs5Witv6u_OQNpEUKYOq8H1Kod4VduoRkhrZ7Pzfe18fTpthpAh1Tkqn4Zf-Q-re1YNCR5d70fVlzenn0_eLc7fvz07OT5faCpEXjCDLBGdRaQ80IKxpCUtNx0x2lpKxarRgs-vV6jDGCgIJRrbatMJxBhF5Kh6vdXdTKsRjC5tRDXITXSjilcyKCf3b7xbyz58k7QRlDFcBJ5uBULKTibtMui1Dt6DzhIT1gg-Q8-vq8RwOUHKcnRJwzAoD2FKEvOOE9zytv0PtG061GAmCvrsL_QiTNGXcRWKUlJKI_yH6tUA0nkbSh96FpXHLeso71A3z2F5C1WWgdGVdsC6Et9LeLGXUJgMP3KvppTk2aePt7I6hpQi2N18MZKzEeVsRDkbsbBPbn7IjvztvAK83ALFWcVAEG90_Y_aT4dh5jo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855329801</pqid></control><display><type>article</type><title>Position-dependent termination and widespread obligatory frameshifting in Euplotes translation</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lobanov, Alexei V ; Heaphy, Stephen M ; Turanov, Anton A ; Gerashchenko, Maxim V ; Pucciarelli, Sandra ; Devaraj, Raghul R ; Xie, Fang ; Petyuk, Vladislav A ; Smith, Richard D ; Klobutcher, Lawrence A ; Atkins, John F ; Miceli, Cristina ; Hatfield, Dolph L ; Baranov, Pavel V ; Gladyshev, Vadim N</creator><creatorcontrib>Lobanov, Alexei V ; Heaphy, Stephen M ; Turanov, Anton A ; Gerashchenko, Maxim V ; Pucciarelli, Sandra ; Devaraj, Raghul R ; Xie, Fang ; Petyuk, Vladislav A ; Smith, Richard D ; Klobutcher, Lawrence A ; Atkins, John F ; Miceli, Cristina ; Hatfield, Dolph L ; Baranov, Pavel V ; Gladyshev, Vadim N ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Large-scale sequencing approaches reveal that the genetic code of Euplotes ciliates supports widespread ribosomal frameshifting at stop codons, and that additional mechanisms are required for efficient translation termination. The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3′ mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a 'stop codon' is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.3330</identifier><identifier>PMID: 27870834</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2017 ; 631/181 ; 631/208/212 ; 631/208/726 ; 631/337/574 ; Amino Acid Sequence ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biological Microscopy ; Codons ; Euplotes ; Euplotes - genetics ; Euplotes - metabolism ; Euplotes crassus ; Euplotes focardii ; Frameshift Mutation ; Genetic aspects ; Genetic research ; Genetics ; Life Sciences ; Membrane Biology ; Messenger RNA ; Molecular biology ; Peptide Chain Termination, Translational ; Properties ; Protein Structure ; Proteome - genetics ; Proteome - metabolism ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Ribonucleic acid ; RNA ; Transcriptome ; Translation (Genetics)</subject><ispartof>Nature structural &amp; molecular biology, 2017-01, Vol.24 (1), p.61-68</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-7d0f396f03557fedf34348d63dcff559b2c980255a0611e5e9a92f4cd69077503</citedby><cites>FETCH-LOGICAL-c599t-7d0f396f03557fedf34348d63dcff559b2c980255a0611e5e9a92f4cd69077503</cites><orcidid>0000-0002-2381-2349 ; 0000-0001-9017-0270 ; 0000000190170270 ; 0000000223812349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.3330$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.3330$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27870834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1372981$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobanov, Alexei V</creatorcontrib><creatorcontrib>Heaphy, Stephen M</creatorcontrib><creatorcontrib>Turanov, Anton A</creatorcontrib><creatorcontrib>Gerashchenko, Maxim V</creatorcontrib><creatorcontrib>Pucciarelli, Sandra</creatorcontrib><creatorcontrib>Devaraj, Raghul R</creatorcontrib><creatorcontrib>Xie, Fang</creatorcontrib><creatorcontrib>Petyuk, Vladislav A</creatorcontrib><creatorcontrib>Smith, Richard D</creatorcontrib><creatorcontrib>Klobutcher, Lawrence A</creatorcontrib><creatorcontrib>Atkins, John F</creatorcontrib><creatorcontrib>Miceli, Cristina</creatorcontrib><creatorcontrib>Hatfield, Dolph L</creatorcontrib><creatorcontrib>Baranov, Pavel V</creatorcontrib><creatorcontrib>Gladyshev, Vadim N</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Position-dependent termination and widespread obligatory frameshifting in Euplotes translation</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Large-scale sequencing approaches reveal that the genetic code of Euplotes ciliates supports widespread ribosomal frameshifting at stop codons, and that additional mechanisms are required for efficient translation termination. The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3′ mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a 'stop codon' is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.</description><subject>631/1647/2017</subject><subject>631/181</subject><subject>631/208/212</subject><subject>631/208/726</subject><subject>631/337/574</subject><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Codons</subject><subject>Euplotes</subject><subject>Euplotes - genetics</subject><subject>Euplotes - metabolism</subject><subject>Euplotes crassus</subject><subject>Euplotes focardii</subject><subject>Frameshift Mutation</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Messenger RNA</subject><subject>Molecular biology</subject><subject>Peptide Chain Termination, Translational</subject><subject>Properties</subject><subject>Protein Structure</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcriptome</subject><subject>Translation (Genetics)</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1vFCEUhidGY2v1wj9gJnqjJrvCMAxwY9I0VZs00fhxK2HhMEszA1tg1P57GbeuXe2F4QJyeM57OIe3qh5jtMSI8Fc-jaslIQTdqQ4xbelCCE7v7s6CHFQPUrpAqKGUkfvVQcM4Q5y0h9XXDyG57IJfGNiAN-BznSGOzqs5Witv6u_OQNpEUKYOq8H1Kod4VduoRkhrZ7Pzfe18fTpthpAh1Tkqn4Zf-Q-re1YNCR5d70fVlzenn0_eLc7fvz07OT5faCpEXjCDLBGdRaQ80IKxpCUtNx0x2lpKxarRgs-vV6jDGCgIJRrbatMJxBhF5Kh6vdXdTKsRjC5tRDXITXSjilcyKCf3b7xbyz58k7QRlDFcBJ5uBULKTibtMui1Dt6DzhIT1gg-Q8-vq8RwOUHKcnRJwzAoD2FKEvOOE9zytv0PtG061GAmCvrsL_QiTNGXcRWKUlJKI_yH6tUA0nkbSh96FpXHLeso71A3z2F5C1WWgdGVdsC6Et9LeLGXUJgMP3KvppTk2aePt7I6hpQi2N18MZKzEeVsRDkbsbBPbn7IjvztvAK83ALFWcVAEG90_Y_aT4dh5jo</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Lobanov, Alexei V</creator><creator>Heaphy, Stephen M</creator><creator>Turanov, Anton A</creator><creator>Gerashchenko, Maxim V</creator><creator>Pucciarelli, Sandra</creator><creator>Devaraj, Raghul R</creator><creator>Xie, Fang</creator><creator>Petyuk, Vladislav A</creator><creator>Smith, Richard D</creator><creator>Klobutcher, Lawrence A</creator><creator>Atkins, John F</creator><creator>Miceli, Cristina</creator><creator>Hatfield, Dolph L</creator><creator>Baranov, Pavel V</creator><creator>Gladyshev, Vadim N</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2381-2349</orcidid><orcidid>https://orcid.org/0000-0001-9017-0270</orcidid><orcidid>https://orcid.org/0000000190170270</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid></search><sort><creationdate>20170101</creationdate><title>Position-dependent termination and widespread obligatory frameshifting in Euplotes translation</title><author>Lobanov, Alexei V ; Heaphy, Stephen M ; Turanov, Anton A ; Gerashchenko, Maxim V ; Pucciarelli, Sandra ; Devaraj, Raghul R ; Xie, Fang ; Petyuk, Vladislav A ; Smith, Richard D ; Klobutcher, Lawrence A ; Atkins, John F ; Miceli, Cristina ; Hatfield, Dolph L ; Baranov, Pavel V ; Gladyshev, Vadim N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-7d0f396f03557fedf34348d63dcff559b2c980255a0611e5e9a92f4cd69077503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/1647/2017</topic><topic>631/181</topic><topic>631/208/212</topic><topic>631/208/726</topic><topic>631/337/574</topic><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Codons</topic><topic>Euplotes</topic><topic>Euplotes - genetics</topic><topic>Euplotes - metabolism</topic><topic>Euplotes crassus</topic><topic>Euplotes focardii</topic><topic>Frameshift Mutation</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Messenger RNA</topic><topic>Molecular biology</topic><topic>Peptide Chain Termination, Translational</topic><topic>Properties</topic><topic>Protein Structure</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcriptome</topic><topic>Translation (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobanov, Alexei V</creatorcontrib><creatorcontrib>Heaphy, Stephen M</creatorcontrib><creatorcontrib>Turanov, Anton A</creatorcontrib><creatorcontrib>Gerashchenko, Maxim V</creatorcontrib><creatorcontrib>Pucciarelli, Sandra</creatorcontrib><creatorcontrib>Devaraj, Raghul R</creatorcontrib><creatorcontrib>Xie, Fang</creatorcontrib><creatorcontrib>Petyuk, Vladislav A</creatorcontrib><creatorcontrib>Smith, Richard D</creatorcontrib><creatorcontrib>Klobutcher, Lawrence A</creatorcontrib><creatorcontrib>Atkins, John F</creatorcontrib><creatorcontrib>Miceli, Cristina</creatorcontrib><creatorcontrib>Hatfield, Dolph L</creatorcontrib><creatorcontrib>Baranov, Pavel V</creatorcontrib><creatorcontrib>Gladyshev, Vadim N</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobanov, Alexei V</au><au>Heaphy, Stephen M</au><au>Turanov, Anton A</au><au>Gerashchenko, Maxim V</au><au>Pucciarelli, Sandra</au><au>Devaraj, Raghul R</au><au>Xie, Fang</au><au>Petyuk, Vladislav A</au><au>Smith, Richard D</au><au>Klobutcher, Lawrence A</au><au>Atkins, John F</au><au>Miceli, Cristina</au><au>Hatfield, Dolph L</au><au>Baranov, Pavel V</au><au>Gladyshev, Vadim N</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Position-dependent termination and widespread obligatory frameshifting in Euplotes translation</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>24</volume><issue>1</issue><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Large-scale sequencing approaches reveal that the genetic code of Euplotes ciliates supports widespread ribosomal frameshifting at stop codons, and that additional mechanisms are required for efficient translation termination. The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3′ mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a 'stop codon' is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27870834</pmid><doi>10.1038/nsmb.3330</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2381-2349</orcidid><orcidid>https://orcid.org/0000-0001-9017-0270</orcidid><orcidid>https://orcid.org/0000000190170270</orcidid><orcidid>https://orcid.org/0000000223812349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2017-01, Vol.24 (1), p.61-68
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5295771
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/1647/2017
631/181
631/208/212
631/208/726
631/337/574
Amino Acid Sequence
Base Sequence
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biological Microscopy
Codons
Euplotes
Euplotes - genetics
Euplotes - metabolism
Euplotes crassus
Euplotes focardii
Frameshift Mutation
Genetic aspects
Genetic research
Genetics
Life Sciences
Membrane Biology
Messenger RNA
Molecular biology
Peptide Chain Termination, Translational
Properties
Protein Structure
Proteome - genetics
Proteome - metabolism
Protozoan Proteins - genetics
Protozoan Proteins - metabolism
Ribonucleic acid
RNA
Transcriptome
Translation (Genetics)
title Position-dependent termination and widespread obligatory frameshifting in Euplotes translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Position-dependent%20termination%20and%20widespread%20obligatory%20frameshifting%20in%20Euplotes%20translation&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Lobanov,%20Alexei%20V&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2017-01-01&rft.volume=24&rft.issue=1&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.3330&rft_dat=%3Cgale_pubme%3EA476586060%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855329801&rft_id=info:pmid/27870834&rft_galeid=A476586060&rfr_iscdi=true