Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry

Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-01, Vol.114 (5), p.968-973
Hauptverfasser: Chetty, Palaniappan S., Mayne, Leland, Lund-Katz, Sissel, Englander, S. Walter, Phillips, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 973
container_issue 5
container_start_page 968
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Chetty, Palaniappan S.
Mayne, Leland
Lund-Katz, Sissel
Englander, S. Walter
Phillips, Michael C.
description Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.
doi_str_mv 10.1073/pnas.1617523114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479120</jstor_id><sourcerecordid>26479120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIkugpgJZSkORTa5f82iQULQQpEg0UFse27Pr1Yw92J7A_Pt4syEBKl_5fPfIxwehtwQuCNTscvIqXZCK1IIyQvgztCLQknXFW3iOVgC0Xjec8hP0KqU9ALSigZfohDbQVqymK_Tr2g5OqwGnHGed52jPy6g6N7i8nGPlDTaLV6PTCTuPd_OoPFZTGNwUphiyLZcbds9tOO4WvFtMDFvrsf2td8pv7b02qpRwmqzOMYw2x-U1etGrIdk3D-cp-vF58_3qen3z7cvXq083a805y2tWi44Lo5uqq01PNfBeM-gZpaK3bUe6xoiaGmC6KflpY4xqra171ilaNUaxU_Tx6DvN3WiNtj5HNcgpulHFRQbl5L-Kdzu5DbdS0JYBJcXgw4NBDD9nm7IcXdJ2GJS3YU6SNBURFZQfL-jZf-g-zNGXeAdKCKAAVaEuj5SOIaVo-8fHEJCHUuWhVPlUatl4_3eGR_5PiwV4dwT2KYf4pFe8bgkFdgeXwKmO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865502006</pqid></control><display><type>article</type><title>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chetty, Palaniappan S. ; Mayne, Leland ; Lund-Katz, Sissel ; Englander, S. Walter ; Phillips, Michael C.</creator><creatorcontrib>Chetty, Palaniappan S. ; Mayne, Leland ; Lund-Katz, Sissel ; Englander, S. Walter ; Phillips, Michael C.</creatorcontrib><description>Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1617523114</identifier><identifier>PMID: 28096372</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Apolipoproteins ; Biological Sciences ; Brain ; Cholesterol ; Crystallography ; Mutation ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-01, Vol.114 (5), p.968-973</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 31, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</citedby><cites>FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</cites><orcidid>0000-0002-4802-2175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479120$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479120$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28096372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chetty, Palaniappan S.</creatorcontrib><creatorcontrib>Mayne, Leland</creatorcontrib><creatorcontrib>Lund-Katz, Sissel</creatorcontrib><creatorcontrib>Englander, S. Walter</creatorcontrib><creatorcontrib>Phillips, Michael C.</creatorcontrib><title>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.</description><subject>Apolipoproteins</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cholesterol</subject><subject>Crystallography</subject><subject>Mutation</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkTtvFDEUhS0EIkugpgJZSkORTa5f82iQULQQpEg0UFse27Pr1Yw92J7A_Pt4syEBKl_5fPfIxwehtwQuCNTscvIqXZCK1IIyQvgztCLQknXFW3iOVgC0Xjec8hP0KqU9ALSigZfohDbQVqymK_Tr2g5OqwGnHGed52jPy6g6N7i8nGPlDTaLV6PTCTuPd_OoPFZTGNwUphiyLZcbds9tOO4WvFtMDFvrsf2td8pv7b02qpRwmqzOMYw2x-U1etGrIdk3D-cp-vF58_3qen3z7cvXq083a805y2tWi44Lo5uqq01PNfBeM-gZpaK3bUe6xoiaGmC6KflpY4xqra171ilaNUaxU_Tx6DvN3WiNtj5HNcgpulHFRQbl5L-Kdzu5DbdS0JYBJcXgw4NBDD9nm7IcXdJ2GJS3YU6SNBURFZQfL-jZf-g-zNGXeAdKCKAAVaEuj5SOIaVo-8fHEJCHUuWhVPlUatl4_3eGR_5PiwV4dwT2KYf4pFe8bgkFdgeXwKmO</recordid><startdate>20170131</startdate><enddate>20170131</enddate><creator>Chetty, Palaniappan S.</creator><creator>Mayne, Leland</creator><creator>Lund-Katz, Sissel</creator><creator>Englander, S. Walter</creator><creator>Phillips, Michael C.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4802-2175</orcidid></search><sort><creationdate>20170131</creationdate><title>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</title><author>Chetty, Palaniappan S. ; Mayne, Leland ; Lund-Katz, Sissel ; Englander, S. Walter ; Phillips, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apolipoproteins</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cholesterol</topic><topic>Crystallography</topic><topic>Mutation</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chetty, Palaniappan S.</creatorcontrib><creatorcontrib>Mayne, Leland</creatorcontrib><creatorcontrib>Lund-Katz, Sissel</creatorcontrib><creatorcontrib>Englander, S. Walter</creatorcontrib><creatorcontrib>Phillips, Michael C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chetty, Palaniappan S.</au><au>Mayne, Leland</au><au>Lund-Katz, Sissel</au><au>Englander, S. Walter</au><au>Phillips, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-01-31</date><risdate>2017</risdate><volume>114</volume><issue>5</issue><spage>968</spage><epage>973</epage><pages>968-973</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28096372</pmid><doi>10.1073/pnas.1617523114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4802-2175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-01, Vol.114 (5), p.968-973
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293021
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Apolipoproteins
Biological Sciences
Brain
Cholesterol
Crystallography
Mutation
Proteins
title Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helical%20structure,%20stability,%20and%20dynamics%20in%20human%20apolipoprotein%20E3%20and%20E4%20by%20hydrogen%20exchange%20and%20mass%20spectrometry&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chetty,%20Palaniappan%20S.&rft.date=2017-01-31&rft.volume=114&rft.issue=5&rft.spage=968&rft.epage=973&rft.pages=968-973&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1617523114&rft_dat=%3Cjstor_pubme%3E26479120%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865502006&rft_id=info:pmid/28096372&rft_jstor_id=26479120&rfr_iscdi=true