Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry
Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein partic...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-01, Vol.114 (5), p.968-973 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 973 |
---|---|
container_issue | 5 |
container_start_page | 968 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Chetty, Palaniappan S. Mayne, Leland Lund-Katz, Sissel Englander, S. Walter Phillips, Michael C. |
description | Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3. |
doi_str_mv | 10.1073/pnas.1617523114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26479120</jstor_id><sourcerecordid>26479120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS0EIkugpgJZSkORTa5f82iQULQQpEg0UFse27Pr1Yw92J7A_Pt4syEBKl_5fPfIxwehtwQuCNTscvIqXZCK1IIyQvgztCLQknXFW3iOVgC0Xjec8hP0KqU9ALSigZfohDbQVqymK_Tr2g5OqwGnHGed52jPy6g6N7i8nGPlDTaLV6PTCTuPd_OoPFZTGNwUphiyLZcbds9tOO4WvFtMDFvrsf2td8pv7b02qpRwmqzOMYw2x-U1etGrIdk3D-cp-vF58_3qen3z7cvXq083a805y2tWi44Lo5uqq01PNfBeM-gZpaK3bUe6xoiaGmC6KflpY4xqra171ilaNUaxU_Tx6DvN3WiNtj5HNcgpulHFRQbl5L-Kdzu5DbdS0JYBJcXgw4NBDD9nm7IcXdJ2GJS3YU6SNBURFZQfL-jZf-g-zNGXeAdKCKAAVaEuj5SOIaVo-8fHEJCHUuWhVPlUatl4_3eGR_5PiwV4dwT2KYf4pFe8bgkFdgeXwKmO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865502006</pqid></control><display><type>article</type><title>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chetty, Palaniappan S. ; Mayne, Leland ; Lund-Katz, Sissel ; Englander, S. Walter ; Phillips, Michael C.</creator><creatorcontrib>Chetty, Palaniappan S. ; Mayne, Leland ; Lund-Katz, Sissel ; Englander, S. Walter ; Phillips, Michael C.</creatorcontrib><description>Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1617523114</identifier><identifier>PMID: 28096372</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Apolipoproteins ; Biological Sciences ; Brain ; Cholesterol ; Crystallography ; Mutation ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-01, Vol.114 (5), p.968-973</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 31, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</citedby><cites>FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</cites><orcidid>0000-0002-4802-2175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26479120$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26479120$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28096372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chetty, Palaniappan S.</creatorcontrib><creatorcontrib>Mayne, Leland</creatorcontrib><creatorcontrib>Lund-Katz, Sissel</creatorcontrib><creatorcontrib>Englander, S. Walter</creatorcontrib><creatorcontrib>Phillips, Michael C.</creatorcontrib><title>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.</description><subject>Apolipoproteins</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cholesterol</subject><subject>Crystallography</subject><subject>Mutation</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkTtvFDEUhS0EIkugpgJZSkORTa5f82iQULQQpEg0UFse27Pr1Yw92J7A_Pt4syEBKl_5fPfIxwehtwQuCNTscvIqXZCK1IIyQvgztCLQknXFW3iOVgC0Xjec8hP0KqU9ALSigZfohDbQVqymK_Tr2g5OqwGnHGed52jPy6g6N7i8nGPlDTaLV6PTCTuPd_OoPFZTGNwUphiyLZcbds9tOO4WvFtMDFvrsf2td8pv7b02qpRwmqzOMYw2x-U1etGrIdk3D-cp-vF58_3qen3z7cvXq083a805y2tWi44Lo5uqq01PNfBeM-gZpaK3bUe6xoiaGmC6KflpY4xqra171ilaNUaxU_Tx6DvN3WiNtj5HNcgpulHFRQbl5L-Kdzu5DbdS0JYBJcXgw4NBDD9nm7IcXdJ2GJS3YU6SNBURFZQfL-jZf-g-zNGXeAdKCKAAVaEuj5SOIaVo-8fHEJCHUuWhVPlUatl4_3eGR_5PiwV4dwT2KYf4pFe8bgkFdgeXwKmO</recordid><startdate>20170131</startdate><enddate>20170131</enddate><creator>Chetty, Palaniappan S.</creator><creator>Mayne, Leland</creator><creator>Lund-Katz, Sissel</creator><creator>Englander, S. Walter</creator><creator>Phillips, Michael C.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4802-2175</orcidid></search><sort><creationdate>20170131</creationdate><title>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</title><author>Chetty, Palaniappan S. ; Mayne, Leland ; Lund-Katz, Sissel ; Englander, S. Walter ; Phillips, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-375b45dc86b7df2c04fc30f3225fe9b1b8d572d03c831128dda9ee7f3ba268da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apolipoproteins</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cholesterol</topic><topic>Crystallography</topic><topic>Mutation</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chetty, Palaniappan S.</creatorcontrib><creatorcontrib>Mayne, Leland</creatorcontrib><creatorcontrib>Lund-Katz, Sissel</creatorcontrib><creatorcontrib>Englander, S. Walter</creatorcontrib><creatorcontrib>Phillips, Michael C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chetty, Palaniappan S.</au><au>Mayne, Leland</au><au>Lund-Katz, Sissel</au><au>Englander, S. Walter</au><au>Phillips, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-01-31</date><risdate>2017</risdate><volume>114</volume><issue>5</issue><spage>968</spage><epage>973</epage><pages>968-973</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer’s disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen–deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28096372</pmid><doi>10.1073/pnas.1617523114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4802-2175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-01, Vol.114 (5), p.968-973 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293021 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Apolipoproteins Biological Sciences Brain Cholesterol Crystallography Mutation Proteins |
title | Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helical%20structure,%20stability,%20and%20dynamics%20in%20human%20apolipoprotein%20E3%20and%20E4%20by%20hydrogen%20exchange%20and%20mass%20spectrometry&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chetty,%20Palaniappan%20S.&rft.date=2017-01-31&rft.volume=114&rft.issue=5&rft.spage=968&rft.epage=973&rft.pages=968-973&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1617523114&rft_dat=%3Cjstor_pubme%3E26479120%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865502006&rft_id=info:pmid/28096372&rft_jstor_id=26479120&rfr_iscdi=true |