Microbial Typing by Machine Learned DNA Melt Signatures

There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) regi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-02, Vol.7 (1), p.42097-42097, Article 42097
Hauptverfasser: Andini, Nadya, Wang, Bo, Athamanolap, Pornpat, Hardick, Justin, Masek, Billie J., Thair, Simone, Hu, Anne, Avornu, Gideon, Peterson, Stephen, Cogill, Steven, Rothman, Richard E., Carroll, Karen C., Gaydos, Charlotte A., Wang, Jeff Tza-Huei, Batzoglou, Serafim, Yang, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42097
container_issue 1
container_start_page 42097
container_title Scientific reports
container_volume 7
creator Andini, Nadya
Wang, Bo
Athamanolap, Pornpat
Hardick, Justin
Masek, Billie J.
Thair, Simone
Hu, Anne
Avornu, Gideon
Peterson, Stephen
Cogill, Steven
Rothman, Richard E.
Carroll, Karen C.
Gaydos, Charlotte A.
Wang, Jeff Tza-Huei
Batzoglou, Serafim
Yang, Samuel
description There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption.
doi_str_mv 10.1038/srep42097
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5292719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865543312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-1bcf258c9993b430dfa68563d2994aeca7c5658129ac135d2a80ebc9a6d4c45d3</originalsourceid><addsrcrecordid>eNplkU1Lw0AQhhdRbKk9-Ack4EWF6H4m2YtQ6ie0erCel81mk25JN3U3EfrvXWktVecyA_Pwzsw7AJwieI0gyW680yuKIU8PQB9DymJMMD7cq3tg6P0ChmCYU8SPQQ9nKGEwSfsgnRrlmtzIOpqtV8ZWUb6OplLNjdXRREtndRHdvYyiqa7b6M1UVrad0_4EHJWy9nq4zQPw_nA_Gz_Fk9fH5_FoEitKsjZGuSoxyxTnnOSUwKKUScYSUmDOqdRKpoolLEOYS4UIK7DMoM4Vl0lBFWUFGYDbje6qy5e6UNq2TtZi5cxSurVopBG_O9bMRdV8inArThEPAhdbAdd8dNq3Ymm80nUtrW46L1CWMEYJQTig53_QRdM5G84TiEOUQphgGKjLDRV888H8crcMguL7I2L3kcCe7W-_I3_8D8DVBvChZSvt9kb-U_sCpXqTjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901700620</pqid></control><display><type>article</type><title>Microbial Typing by Machine Learned DNA Melt Signatures</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Andini, Nadya ; Wang, Bo ; Athamanolap, Pornpat ; Hardick, Justin ; Masek, Billie J. ; Thair, Simone ; Hu, Anne ; Avornu, Gideon ; Peterson, Stephen ; Cogill, Steven ; Rothman, Richard E. ; Carroll, Karen C. ; Gaydos, Charlotte A. ; Wang, Jeff Tza-Huei ; Batzoglou, Serafim ; Yang, Samuel</creator><creatorcontrib>Andini, Nadya ; Wang, Bo ; Athamanolap, Pornpat ; Hardick, Justin ; Masek, Billie J. ; Thair, Simone ; Hu, Anne ; Avornu, Gideon ; Peterson, Stephen ; Cogill, Steven ; Rothman, Richard E. ; Carroll, Karen C. ; Gaydos, Charlotte A. ; Wang, Jeff Tza-Huei ; Batzoglou, Serafim ; Yang, Samuel</creatorcontrib><description>There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep42097</identifier><identifier>PMID: 28165067</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/71 ; 631/326/107 ; 631/326/2521 ; Algorithms ; Automation ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacterial Typing Techniques - methods ; Bayes Theorem ; Bayesian analysis ; Blood culture ; Classification ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - genetics ; DNA, Ribosomal Spacer - genetics ; Genomes ; Humanities and Social Sciences ; Machine Learning ; multidisciplinary ; Phylogenetics ; Phylogeny ; Ribosomal DNA ; rRNA 16S ; Science ; Spacer ; Statistical analysis ; Transition Temperature ; Typing</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.42097-42097, Article 42097</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-1bcf258c9993b430dfa68563d2994aeca7c5658129ac135d2a80ebc9a6d4c45d3</citedby><cites>FETCH-LOGICAL-c438t-1bcf258c9993b430dfa68563d2994aeca7c5658129ac135d2a80ebc9a6d4c45d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292719/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28165067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andini, Nadya</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Athamanolap, Pornpat</creatorcontrib><creatorcontrib>Hardick, Justin</creatorcontrib><creatorcontrib>Masek, Billie J.</creatorcontrib><creatorcontrib>Thair, Simone</creatorcontrib><creatorcontrib>Hu, Anne</creatorcontrib><creatorcontrib>Avornu, Gideon</creatorcontrib><creatorcontrib>Peterson, Stephen</creatorcontrib><creatorcontrib>Cogill, Steven</creatorcontrib><creatorcontrib>Rothman, Richard E.</creatorcontrib><creatorcontrib>Carroll, Karen C.</creatorcontrib><creatorcontrib>Gaydos, Charlotte A.</creatorcontrib><creatorcontrib>Wang, Jeff Tza-Huei</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><creatorcontrib>Yang, Samuel</creatorcontrib><title>Microbial Typing by Machine Learned DNA Melt Signatures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption.</description><subject>38/71</subject><subject>631/326/107</subject><subject>631/326/2521</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacterial Typing Techniques - methods</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Blood culture</subject><subject>Classification</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal Spacer - genetics</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Machine Learning</subject><subject>multidisciplinary</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Ribosomal DNA</subject><subject>rRNA 16S</subject><subject>Science</subject><subject>Spacer</subject><subject>Statistical analysis</subject><subject>Transition Temperature</subject><subject>Typing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1Lw0AQhhdRbKk9-Ack4EWF6H4m2YtQ6ie0erCel81mk25JN3U3EfrvXWktVecyA_Pwzsw7AJwieI0gyW680yuKIU8PQB9DymJMMD7cq3tg6P0ChmCYU8SPQQ9nKGEwSfsgnRrlmtzIOpqtV8ZWUb6OplLNjdXRREtndRHdvYyiqa7b6M1UVrad0_4EHJWy9nq4zQPw_nA_Gz_Fk9fH5_FoEitKsjZGuSoxyxTnnOSUwKKUScYSUmDOqdRKpoolLEOYS4UIK7DMoM4Vl0lBFWUFGYDbje6qy5e6UNq2TtZi5cxSurVopBG_O9bMRdV8inArThEPAhdbAdd8dNq3Ymm80nUtrW46L1CWMEYJQTig53_QRdM5G84TiEOUQphgGKjLDRV888H8crcMguL7I2L3kcCe7W-_I3_8D8DVBvChZSvt9kb-U_sCpXqTjQ</recordid><startdate>20170206</startdate><enddate>20170206</enddate><creator>Andini, Nadya</creator><creator>Wang, Bo</creator><creator>Athamanolap, Pornpat</creator><creator>Hardick, Justin</creator><creator>Masek, Billie J.</creator><creator>Thair, Simone</creator><creator>Hu, Anne</creator><creator>Avornu, Gideon</creator><creator>Peterson, Stephen</creator><creator>Cogill, Steven</creator><creator>Rothman, Richard E.</creator><creator>Carroll, Karen C.</creator><creator>Gaydos, Charlotte A.</creator><creator>Wang, Jeff Tza-Huei</creator><creator>Batzoglou, Serafim</creator><creator>Yang, Samuel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170206</creationdate><title>Microbial Typing by Machine Learned DNA Melt Signatures</title><author>Andini, Nadya ; Wang, Bo ; Athamanolap, Pornpat ; Hardick, Justin ; Masek, Billie J. ; Thair, Simone ; Hu, Anne ; Avornu, Gideon ; Peterson, Stephen ; Cogill, Steven ; Rothman, Richard E. ; Carroll, Karen C. ; Gaydos, Charlotte A. ; Wang, Jeff Tza-Huei ; Batzoglou, Serafim ; Yang, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-1bcf258c9993b430dfa68563d2994aeca7c5658129ac135d2a80ebc9a6d4c45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38/71</topic><topic>631/326/107</topic><topic>631/326/2521</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacterial Typing Techniques - methods</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Blood culture</topic><topic>Classification</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal Spacer - genetics</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Machine Learning</topic><topic>multidisciplinary</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Ribosomal DNA</topic><topic>rRNA 16S</topic><topic>Science</topic><topic>Spacer</topic><topic>Statistical analysis</topic><topic>Transition Temperature</topic><topic>Typing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andini, Nadya</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Athamanolap, Pornpat</creatorcontrib><creatorcontrib>Hardick, Justin</creatorcontrib><creatorcontrib>Masek, Billie J.</creatorcontrib><creatorcontrib>Thair, Simone</creatorcontrib><creatorcontrib>Hu, Anne</creatorcontrib><creatorcontrib>Avornu, Gideon</creatorcontrib><creatorcontrib>Peterson, Stephen</creatorcontrib><creatorcontrib>Cogill, Steven</creatorcontrib><creatorcontrib>Rothman, Richard E.</creatorcontrib><creatorcontrib>Carroll, Karen C.</creatorcontrib><creatorcontrib>Gaydos, Charlotte A.</creatorcontrib><creatorcontrib>Wang, Jeff Tza-Huei</creatorcontrib><creatorcontrib>Batzoglou, Serafim</creatorcontrib><creatorcontrib>Yang, Samuel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andini, Nadya</au><au>Wang, Bo</au><au>Athamanolap, Pornpat</au><au>Hardick, Justin</au><au>Masek, Billie J.</au><au>Thair, Simone</au><au>Hu, Anne</au><au>Avornu, Gideon</au><au>Peterson, Stephen</au><au>Cogill, Steven</au><au>Rothman, Richard E.</au><au>Carroll, Karen C.</au><au>Gaydos, Charlotte A.</au><au>Wang, Jeff Tza-Huei</au><au>Batzoglou, Serafim</au><au>Yang, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Typing by Machine Learned DNA Melt Signatures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-06</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>42097</spage><epage>42097</epage><pages>42097-42097</pages><artnum>42097</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28165067</pmid><doi>10.1038/srep42097</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-02, Vol.7 (1), p.42097-42097, Article 42097
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5292719
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 38/71
631/326/107
631/326/2521
Algorithms
Automation
Bacteria
Bacteria - classification
Bacteria - genetics
Bacterial Typing Techniques - methods
Bayes Theorem
Bayesian analysis
Blood culture
Classification
Deoxyribonucleic acid
DNA
DNA, Bacterial - genetics
DNA, Ribosomal Spacer - genetics
Genomes
Humanities and Social Sciences
Machine Learning
multidisciplinary
Phylogenetics
Phylogeny
Ribosomal DNA
rRNA 16S
Science
Spacer
Statistical analysis
Transition Temperature
Typing
title Microbial Typing by Machine Learned DNA Melt Signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Typing%20by%20Machine%20Learned%20DNA%20Melt%20Signatures&rft.jtitle=Scientific%20reports&rft.au=Andini,%20Nadya&rft.date=2017-02-06&rft.volume=7&rft.issue=1&rft.spage=42097&rft.epage=42097&rft.pages=42097-42097&rft.artnum=42097&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep42097&rft_dat=%3Cproquest_pubme%3E1865543312%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901700620&rft_id=info:pmid/28165067&rfr_iscdi=true