A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure
Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the...
Gespeichert in:
Veröffentlicht in: | The Journal of pediatrics 2016-10, Vol.177, p.121-127.e1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127.e1 |
---|---|
container_issue | |
container_start_page | 121 |
container_title | The Journal of pediatrics |
container_volume | 177 |
creator | Goh, Patrick K., BS Doyle, Lauren R., BS Glass, Leila, MS Jones, Kenneth L., MD Riley, Edward P., PhD Coles, Claire D., PhD Hoyme, H. Eugene, MD Kable, Julie A., PhD May, Philip A., PhD Kalberg, Wendy O., PhD Sowell, Elizabeth, R., PhD Wozniak, Jeffrey R., PhD Mattson, Sarah N., PhD |
description | Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment. |
doi_str_mv | 10.1016/j.jpeds.2016.06.047 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5291174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022347616304139</els_id><sourcerecordid>27476634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</originalsourceid><addsrcrecordid>eNqFkdtuEzEQhi0EomngCZCQX2DD-LDe7AWVorTQokqtRLm2fJglXrbryN5U5O1xCFS0N0gjWR7P_8_4G0LeMVgwYOpDv-i36POCl8sCSsjmBZkxaJtKLYV4SWYAnFdCNuqEnObcA0ArAV6TE96UpBJyRr6s6Dm6kEMc6V1CpFOkVx7HKXR7ut6EwScc6arr0E3oqd3T25IwkxnoanBxEwd68XMb8y7hG_KqM0PGt3_OOfn26eJufVld33y-Wq-uK1czOVV1XdvGcqW8d1AL07XglEVgzggjvJJSctZxthS85qKRohZeWCeVl9YquxRzcnb03e7sPXpXhk1m0NsU7k3a62iCfvoyho3-Hh90zVvGiuGciKOBSzHnhN2jloE-oNW9_o1WH9BqKCGbonr_b9tHzV-WpeDjsQDL5x8CJp1dwNGhD6nQ0z6G_zQ4e6Z3QxiDM8MP3GPu4y6NhatmOnMN-uthu4flMiVAMtGKX7azoIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Goh, Patrick K., BS ; Doyle, Lauren R., BS ; Glass, Leila, MS ; Jones, Kenneth L., MD ; Riley, Edward P., PhD ; Coles, Claire D., PhD ; Hoyme, H. Eugene, MD ; Kable, Julie A., PhD ; May, Philip A., PhD ; Kalberg, Wendy O., PhD ; Sowell, Elizabeth, R., PhD ; Wozniak, Jeffrey R., PhD ; Mattson, Sarah N., PhD</creator><creatorcontrib>Goh, Patrick K., BS ; Doyle, Lauren R., BS ; Glass, Leila, MS ; Jones, Kenneth L., MD ; Riley, Edward P., PhD ; Coles, Claire D., PhD ; Hoyme, H. Eugene, MD ; Kable, Julie A., PhD ; May, Philip A., PhD ; Kalberg, Wendy O., PhD ; Sowell, Elizabeth, R., PhD ; Wozniak, Jeffrey R., PhD ; Mattson, Sarah N., PhD</creatorcontrib><description>Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.</description><identifier>ISSN: 0022-3476</identifier><identifier>EISSN: 1097-6833</identifier><identifier>DOI: 10.1016/j.jpeds.2016.06.047</identifier><identifier>PMID: 27476634</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Alcohol Drinking - adverse effects ; Child ; Child, Preschool ; clinical identification ; Decision Trees ; Female ; fetal alcohol spectrum disorders (FASD) ; Fetal Alcohol Spectrum Disorders - diagnosis ; Fetal Alcohol Spectrum Disorders - etiology ; fetal alcohol syndrome (FAS) ; Humans ; Infant ; Neuropsychological Tests ; Pediatrics ; Pregnancy ; prenatal alcohol exposure ; Prenatal Exposure Delayed Effects - diagnosis ; Prenatal Exposure Delayed Effects - etiology ; Reproducibility of Results ; Retrospective Studies ; screening tool ; United States</subject><ispartof>The Journal of pediatrics, 2016-10, Vol.177, p.121-127.e1</ispartof><rights>Elsevier Inc.</rights><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</citedby><cites>FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</cites><orcidid>0000-0001-8499-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022347616304139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27476634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goh, Patrick K., BS</creatorcontrib><creatorcontrib>Doyle, Lauren R., BS</creatorcontrib><creatorcontrib>Glass, Leila, MS</creatorcontrib><creatorcontrib>Jones, Kenneth L., MD</creatorcontrib><creatorcontrib>Riley, Edward P., PhD</creatorcontrib><creatorcontrib>Coles, Claire D., PhD</creatorcontrib><creatorcontrib>Hoyme, H. Eugene, MD</creatorcontrib><creatorcontrib>Kable, Julie A., PhD</creatorcontrib><creatorcontrib>May, Philip A., PhD</creatorcontrib><creatorcontrib>Kalberg, Wendy O., PhD</creatorcontrib><creatorcontrib>Sowell, Elizabeth, R., PhD</creatorcontrib><creatorcontrib>Wozniak, Jeffrey R., PhD</creatorcontrib><creatorcontrib>Mattson, Sarah N., PhD</creatorcontrib><title>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</title><title>The Journal of pediatrics</title><addtitle>J Pediatr</addtitle><description>Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.</description><subject>Adolescent</subject><subject>Alcohol Drinking - adverse effects</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>clinical identification</subject><subject>Decision Trees</subject><subject>Female</subject><subject>fetal alcohol spectrum disorders (FASD)</subject><subject>Fetal Alcohol Spectrum Disorders - diagnosis</subject><subject>Fetal Alcohol Spectrum Disorders - etiology</subject><subject>fetal alcohol syndrome (FAS)</subject><subject>Humans</subject><subject>Infant</subject><subject>Neuropsychological Tests</subject><subject>Pediatrics</subject><subject>Pregnancy</subject><subject>prenatal alcohol exposure</subject><subject>Prenatal Exposure Delayed Effects - diagnosis</subject><subject>Prenatal Exposure Delayed Effects - etiology</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>screening tool</subject><subject>United States</subject><issn>0022-3476</issn><issn>1097-6833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkdtuEzEQhi0EomngCZCQX2DD-LDe7AWVorTQokqtRLm2fJglXrbryN5U5O1xCFS0N0gjWR7P_8_4G0LeMVgwYOpDv-i36POCl8sCSsjmBZkxaJtKLYV4SWYAnFdCNuqEnObcA0ArAV6TE96UpBJyRr6s6Dm6kEMc6V1CpFOkVx7HKXR7ut6EwScc6arr0E3oqd3T25IwkxnoanBxEwd68XMb8y7hG_KqM0PGt3_OOfn26eJufVld33y-Wq-uK1czOVV1XdvGcqW8d1AL07XglEVgzggjvJJSctZxthS85qKRohZeWCeVl9YquxRzcnb03e7sPXpXhk1m0NsU7k3a62iCfvoyho3-Hh90zVvGiuGciKOBSzHnhN2jloE-oNW9_o1WH9BqKCGbonr_b9tHzV-WpeDjsQDL5x8CJp1dwNGhD6nQ0z6G_zQ4e6Z3QxiDM8MP3GPu4y6NhatmOnMN-uthu4flMiVAMtGKX7azoIw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Goh, Patrick K., BS</creator><creator>Doyle, Lauren R., BS</creator><creator>Glass, Leila, MS</creator><creator>Jones, Kenneth L., MD</creator><creator>Riley, Edward P., PhD</creator><creator>Coles, Claire D., PhD</creator><creator>Hoyme, H. Eugene, MD</creator><creator>Kable, Julie A., PhD</creator><creator>May, Philip A., PhD</creator><creator>Kalberg, Wendy O., PhD</creator><creator>Sowell, Elizabeth, R., PhD</creator><creator>Wozniak, Jeffrey R., PhD</creator><creator>Mattson, Sarah N., PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8499-9605</orcidid></search><sort><creationdate>20161001</creationdate><title>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</title><author>Goh, Patrick K., BS ; Doyle, Lauren R., BS ; Glass, Leila, MS ; Jones, Kenneth L., MD ; Riley, Edward P., PhD ; Coles, Claire D., PhD ; Hoyme, H. Eugene, MD ; Kable, Julie A., PhD ; May, Philip A., PhD ; Kalberg, Wendy O., PhD ; Sowell, Elizabeth, R., PhD ; Wozniak, Jeffrey R., PhD ; Mattson, Sarah N., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Alcohol Drinking - adverse effects</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>clinical identification</topic><topic>Decision Trees</topic><topic>Female</topic><topic>fetal alcohol spectrum disorders (FASD)</topic><topic>Fetal Alcohol Spectrum Disorders - diagnosis</topic><topic>Fetal Alcohol Spectrum Disorders - etiology</topic><topic>fetal alcohol syndrome (FAS)</topic><topic>Humans</topic><topic>Infant</topic><topic>Neuropsychological Tests</topic><topic>Pediatrics</topic><topic>Pregnancy</topic><topic>prenatal alcohol exposure</topic><topic>Prenatal Exposure Delayed Effects - diagnosis</topic><topic>Prenatal Exposure Delayed Effects - etiology</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>screening tool</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Patrick K., BS</creatorcontrib><creatorcontrib>Doyle, Lauren R., BS</creatorcontrib><creatorcontrib>Glass, Leila, MS</creatorcontrib><creatorcontrib>Jones, Kenneth L., MD</creatorcontrib><creatorcontrib>Riley, Edward P., PhD</creatorcontrib><creatorcontrib>Coles, Claire D., PhD</creatorcontrib><creatorcontrib>Hoyme, H. Eugene, MD</creatorcontrib><creatorcontrib>Kable, Julie A., PhD</creatorcontrib><creatorcontrib>May, Philip A., PhD</creatorcontrib><creatorcontrib>Kalberg, Wendy O., PhD</creatorcontrib><creatorcontrib>Sowell, Elizabeth, R., PhD</creatorcontrib><creatorcontrib>Wozniak, Jeffrey R., PhD</creatorcontrib><creatorcontrib>Mattson, Sarah N., PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pediatrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Patrick K., BS</au><au>Doyle, Lauren R., BS</au><au>Glass, Leila, MS</au><au>Jones, Kenneth L., MD</au><au>Riley, Edward P., PhD</au><au>Coles, Claire D., PhD</au><au>Hoyme, H. Eugene, MD</au><au>Kable, Julie A., PhD</au><au>May, Philip A., PhD</au><au>Kalberg, Wendy O., PhD</au><au>Sowell, Elizabeth, R., PhD</au><au>Wozniak, Jeffrey R., PhD</au><au>Mattson, Sarah N., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</atitle><jtitle>The Journal of pediatrics</jtitle><addtitle>J Pediatr</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>177</volume><spage>121</spage><epage>127.e1</epage><pages>121-127.e1</pages><issn>0022-3476</issn><eissn>1097-6833</eissn><abstract>Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27476634</pmid><doi>10.1016/j.jpeds.2016.06.047</doi><orcidid>https://orcid.org/0000-0001-8499-9605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3476 |
ispartof | The Journal of pediatrics, 2016-10, Vol.177, p.121-127.e1 |
issn | 0022-3476 1097-6833 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5291174 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adolescent Alcohol Drinking - adverse effects Child Child, Preschool clinical identification Decision Trees Female fetal alcohol spectrum disorders (FASD) Fetal Alcohol Spectrum Disorders - diagnosis Fetal Alcohol Spectrum Disorders - etiology fetal alcohol syndrome (FAS) Humans Infant Neuropsychological Tests Pediatrics Pregnancy prenatal alcohol exposure Prenatal Exposure Delayed Effects - diagnosis Prenatal Exposure Delayed Effects - etiology Reproducibility of Results Retrospective Studies screening tool United States |
title | A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Decision%20Tree%20to%20Identify%20Children%20Affected%20by%20Prenatal%20Alcohol%20Exposure&rft.jtitle=The%20Journal%20of%20pediatrics&rft.au=Goh,%20Patrick%20K.,%20BS&rft.date=2016-10-01&rft.volume=177&rft.spage=121&rft.epage=127.e1&rft.pages=121-127.e1&rft.issn=0022-3476&rft.eissn=1097-6833&rft_id=info:doi/10.1016/j.jpeds.2016.06.047&rft_dat=%3Cpubmed_cross%3E27476634%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27476634&rft_els_id=S0022347616304139&rfr_iscdi=true |