A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure

Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pediatrics 2016-10, Vol.177, p.121-127.e1
Hauptverfasser: Goh, Patrick K., BS, Doyle, Lauren R., BS, Glass, Leila, MS, Jones, Kenneth L., MD, Riley, Edward P., PhD, Coles, Claire D., PhD, Hoyme, H. Eugene, MD, Kable, Julie A., PhD, May, Philip A., PhD, Kalberg, Wendy O., PhD, Sowell, Elizabeth, R., PhD, Wozniak, Jeffrey R., PhD, Mattson, Sarah N., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127.e1
container_issue
container_start_page 121
container_title The Journal of pediatrics
container_volume 177
creator Goh, Patrick K., BS
Doyle, Lauren R., BS
Glass, Leila, MS
Jones, Kenneth L., MD
Riley, Edward P., PhD
Coles, Claire D., PhD
Hoyme, H. Eugene, MD
Kable, Julie A., PhD
May, Philip A., PhD
Kalberg, Wendy O., PhD
Sowell, Elizabeth, R., PhD
Wozniak, Jeffrey R., PhD
Mattson, Sarah N., PhD
description Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.
doi_str_mv 10.1016/j.jpeds.2016.06.047
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5291174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022347616304139</els_id><sourcerecordid>27476634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</originalsourceid><addsrcrecordid>eNqFkdtuEzEQhi0EomngCZCQX2DD-LDe7AWVorTQokqtRLm2fJglXrbryN5U5O1xCFS0N0gjWR7P_8_4G0LeMVgwYOpDv-i36POCl8sCSsjmBZkxaJtKLYV4SWYAnFdCNuqEnObcA0ArAV6TE96UpBJyRr6s6Dm6kEMc6V1CpFOkVx7HKXR7ut6EwScc6arr0E3oqd3T25IwkxnoanBxEwd68XMb8y7hG_KqM0PGt3_OOfn26eJufVld33y-Wq-uK1czOVV1XdvGcqW8d1AL07XglEVgzggjvJJSctZxthS85qKRohZeWCeVl9YquxRzcnb03e7sPXpXhk1m0NsU7k3a62iCfvoyho3-Hh90zVvGiuGciKOBSzHnhN2jloE-oNW9_o1WH9BqKCGbonr_b9tHzV-WpeDjsQDL5x8CJp1dwNGhD6nQ0z6G_zQ4e6Z3QxiDM8MP3GPu4y6NhatmOnMN-uthu4flMiVAMtGKX7azoIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Goh, Patrick K., BS ; Doyle, Lauren R., BS ; Glass, Leila, MS ; Jones, Kenneth L., MD ; Riley, Edward P., PhD ; Coles, Claire D., PhD ; Hoyme, H. Eugene, MD ; Kable, Julie A., PhD ; May, Philip A., PhD ; Kalberg, Wendy O., PhD ; Sowell, Elizabeth, R., PhD ; Wozniak, Jeffrey R., PhD ; Mattson, Sarah N., PhD</creator><creatorcontrib>Goh, Patrick K., BS ; Doyle, Lauren R., BS ; Glass, Leila, MS ; Jones, Kenneth L., MD ; Riley, Edward P., PhD ; Coles, Claire D., PhD ; Hoyme, H. Eugene, MD ; Kable, Julie A., PhD ; May, Philip A., PhD ; Kalberg, Wendy O., PhD ; Sowell, Elizabeth, R., PhD ; Wozniak, Jeffrey R., PhD ; Mattson, Sarah N., PhD</creatorcontrib><description>Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.</description><identifier>ISSN: 0022-3476</identifier><identifier>EISSN: 1097-6833</identifier><identifier>DOI: 10.1016/j.jpeds.2016.06.047</identifier><identifier>PMID: 27476634</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Alcohol Drinking - adverse effects ; Child ; Child, Preschool ; clinical identification ; Decision Trees ; Female ; fetal alcohol spectrum disorders (FASD) ; Fetal Alcohol Spectrum Disorders - diagnosis ; Fetal Alcohol Spectrum Disorders - etiology ; fetal alcohol syndrome (FAS) ; Humans ; Infant ; Neuropsychological Tests ; Pediatrics ; Pregnancy ; prenatal alcohol exposure ; Prenatal Exposure Delayed Effects - diagnosis ; Prenatal Exposure Delayed Effects - etiology ; Reproducibility of Results ; Retrospective Studies ; screening tool ; United States</subject><ispartof>The Journal of pediatrics, 2016-10, Vol.177, p.121-127.e1</ispartof><rights>Elsevier Inc.</rights><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</citedby><cites>FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</cites><orcidid>0000-0001-8499-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022347616304139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27476634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goh, Patrick K., BS</creatorcontrib><creatorcontrib>Doyle, Lauren R., BS</creatorcontrib><creatorcontrib>Glass, Leila, MS</creatorcontrib><creatorcontrib>Jones, Kenneth L., MD</creatorcontrib><creatorcontrib>Riley, Edward P., PhD</creatorcontrib><creatorcontrib>Coles, Claire D., PhD</creatorcontrib><creatorcontrib>Hoyme, H. Eugene, MD</creatorcontrib><creatorcontrib>Kable, Julie A., PhD</creatorcontrib><creatorcontrib>May, Philip A., PhD</creatorcontrib><creatorcontrib>Kalberg, Wendy O., PhD</creatorcontrib><creatorcontrib>Sowell, Elizabeth, R., PhD</creatorcontrib><creatorcontrib>Wozniak, Jeffrey R., PhD</creatorcontrib><creatorcontrib>Mattson, Sarah N., PhD</creatorcontrib><title>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</title><title>The Journal of pediatrics</title><addtitle>J Pediatr</addtitle><description>Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.</description><subject>Adolescent</subject><subject>Alcohol Drinking - adverse effects</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>clinical identification</subject><subject>Decision Trees</subject><subject>Female</subject><subject>fetal alcohol spectrum disorders (FASD)</subject><subject>Fetal Alcohol Spectrum Disorders - diagnosis</subject><subject>Fetal Alcohol Spectrum Disorders - etiology</subject><subject>fetal alcohol syndrome (FAS)</subject><subject>Humans</subject><subject>Infant</subject><subject>Neuropsychological Tests</subject><subject>Pediatrics</subject><subject>Pregnancy</subject><subject>prenatal alcohol exposure</subject><subject>Prenatal Exposure Delayed Effects - diagnosis</subject><subject>Prenatal Exposure Delayed Effects - etiology</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>screening tool</subject><subject>United States</subject><issn>0022-3476</issn><issn>1097-6833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkdtuEzEQhi0EomngCZCQX2DD-LDe7AWVorTQokqtRLm2fJglXrbryN5U5O1xCFS0N0gjWR7P_8_4G0LeMVgwYOpDv-i36POCl8sCSsjmBZkxaJtKLYV4SWYAnFdCNuqEnObcA0ArAV6TE96UpBJyRr6s6Dm6kEMc6V1CpFOkVx7HKXR7ut6EwScc6arr0E3oqd3T25IwkxnoanBxEwd68XMb8y7hG_KqM0PGt3_OOfn26eJufVld33y-Wq-uK1czOVV1XdvGcqW8d1AL07XglEVgzggjvJJSctZxthS85qKRohZeWCeVl9YquxRzcnb03e7sPXpXhk1m0NsU7k3a62iCfvoyho3-Hh90zVvGiuGciKOBSzHnhN2jloE-oNW9_o1WH9BqKCGbonr_b9tHzV-WpeDjsQDL5x8CJp1dwNGhD6nQ0z6G_zQ4e6Z3QxiDM8MP3GPu4y6NhatmOnMN-uthu4flMiVAMtGKX7azoIw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Goh, Patrick K., BS</creator><creator>Doyle, Lauren R., BS</creator><creator>Glass, Leila, MS</creator><creator>Jones, Kenneth L., MD</creator><creator>Riley, Edward P., PhD</creator><creator>Coles, Claire D., PhD</creator><creator>Hoyme, H. Eugene, MD</creator><creator>Kable, Julie A., PhD</creator><creator>May, Philip A., PhD</creator><creator>Kalberg, Wendy O., PhD</creator><creator>Sowell, Elizabeth, R., PhD</creator><creator>Wozniak, Jeffrey R., PhD</creator><creator>Mattson, Sarah N., PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8499-9605</orcidid></search><sort><creationdate>20161001</creationdate><title>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</title><author>Goh, Patrick K., BS ; Doyle, Lauren R., BS ; Glass, Leila, MS ; Jones, Kenneth L., MD ; Riley, Edward P., PhD ; Coles, Claire D., PhD ; Hoyme, H. Eugene, MD ; Kable, Julie A., PhD ; May, Philip A., PhD ; Kalberg, Wendy O., PhD ; Sowell, Elizabeth, R., PhD ; Wozniak, Jeffrey R., PhD ; Mattson, Sarah N., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-555b7b266ddc053af90c6be01ca3a3d644421f2183252374353d3bc46d4bb6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Alcohol Drinking - adverse effects</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>clinical identification</topic><topic>Decision Trees</topic><topic>Female</topic><topic>fetal alcohol spectrum disorders (FASD)</topic><topic>Fetal Alcohol Spectrum Disorders - diagnosis</topic><topic>Fetal Alcohol Spectrum Disorders - etiology</topic><topic>fetal alcohol syndrome (FAS)</topic><topic>Humans</topic><topic>Infant</topic><topic>Neuropsychological Tests</topic><topic>Pediatrics</topic><topic>Pregnancy</topic><topic>prenatal alcohol exposure</topic><topic>Prenatal Exposure Delayed Effects - diagnosis</topic><topic>Prenatal Exposure Delayed Effects - etiology</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>screening tool</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Patrick K., BS</creatorcontrib><creatorcontrib>Doyle, Lauren R., BS</creatorcontrib><creatorcontrib>Glass, Leila, MS</creatorcontrib><creatorcontrib>Jones, Kenneth L., MD</creatorcontrib><creatorcontrib>Riley, Edward P., PhD</creatorcontrib><creatorcontrib>Coles, Claire D., PhD</creatorcontrib><creatorcontrib>Hoyme, H. Eugene, MD</creatorcontrib><creatorcontrib>Kable, Julie A., PhD</creatorcontrib><creatorcontrib>May, Philip A., PhD</creatorcontrib><creatorcontrib>Kalberg, Wendy O., PhD</creatorcontrib><creatorcontrib>Sowell, Elizabeth, R., PhD</creatorcontrib><creatorcontrib>Wozniak, Jeffrey R., PhD</creatorcontrib><creatorcontrib>Mattson, Sarah N., PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pediatrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Patrick K., BS</au><au>Doyle, Lauren R., BS</au><au>Glass, Leila, MS</au><au>Jones, Kenneth L., MD</au><au>Riley, Edward P., PhD</au><au>Coles, Claire D., PhD</au><au>Hoyme, H. Eugene, MD</au><au>Kable, Julie A., PhD</au><au>May, Philip A., PhD</au><au>Kalberg, Wendy O., PhD</au><au>Sowell, Elizabeth, R., PhD</au><au>Wozniak, Jeffrey R., PhD</au><au>Mattson, Sarah N., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure</atitle><jtitle>The Journal of pediatrics</jtitle><addtitle>J Pediatr</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>177</volume><spage>121</spage><epage>127.e1</epage><pages>121-127.e1</pages><issn>0022-3476</issn><eissn>1097-6833</eissn><abstract>Objective To develop and validate a hierarchical decision tree model that combines neurobehavioral and physical measures to identify children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the US. The model was developed after we evaluated more than 1000 neurobehavioral and dysmorphology variables collected from 434 children (8-16 years of age) with prenatal alcohol exposure, with and without fetal alcohol syndrome, and nonexposed control subjects, with and without other clinically-relevant behavioral or cognitive concerns. The model subsequently was validated in an independent sample of 454 children in 2 age ranges (5-7 years or 10-16 years). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from nonexposed control subjects, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27476634</pmid><doi>10.1016/j.jpeds.2016.06.047</doi><orcidid>https://orcid.org/0000-0001-8499-9605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3476
ispartof The Journal of pediatrics, 2016-10, Vol.177, p.121-127.e1
issn 0022-3476
1097-6833
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5291174
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adolescent
Alcohol Drinking - adverse effects
Child
Child, Preschool
clinical identification
Decision Trees
Female
fetal alcohol spectrum disorders (FASD)
Fetal Alcohol Spectrum Disorders - diagnosis
Fetal Alcohol Spectrum Disorders - etiology
fetal alcohol syndrome (FAS)
Humans
Infant
Neuropsychological Tests
Pediatrics
Pregnancy
prenatal alcohol exposure
Prenatal Exposure Delayed Effects - diagnosis
Prenatal Exposure Delayed Effects - etiology
Reproducibility of Results
Retrospective Studies
screening tool
United States
title A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Decision%20Tree%20to%20Identify%20Children%20Affected%20by%20Prenatal%20Alcohol%20Exposure&rft.jtitle=The%20Journal%20of%20pediatrics&rft.au=Goh,%20Patrick%20K.,%20BS&rft.date=2016-10-01&rft.volume=177&rft.spage=121&rft.epage=127.e1&rft.pages=121-127.e1&rft.issn=0022-3476&rft.eissn=1097-6833&rft_id=info:doi/10.1016/j.jpeds.2016.06.047&rft_dat=%3Cpubmed_cross%3E27476634%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27476634&rft_els_id=S0022347616304139&rfr_iscdi=true