Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-02, Vol.7 (1), p.41981-41981, Article 41981 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41981 |
---|---|
container_issue | 1 |
container_start_page | 41981 |
container_title | Scientific reports |
container_volume | 7 |
creator | Moon, Hyunjin Lee, Habeom Kwon, Jinhyeong Suh, Young Duk Kim, Dong Kwan Ha, Inho Yeo, Junyeob Hong, Sukjoon Ko, Seung Hwan |
description | Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. |
doi_str_mv | 10.1038/srep41981 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5290463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865545362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f74c92c7be2bbaca99397c6441815c4e7a9b336d51fe4a035390134545dbe66a3</originalsourceid><addsrcrecordid>eNplkU1vEzEQhi0EolXpgT-AVuICqEv8uRtfkKLQAlJVkFrE0fI6s4nLxl7Guy059p_jkhIF8MW25pl33pkh5DmjbxkV00lC6CXTU_aIHHIqVckF54_33gfkOKVrmo_iOpNPyQGfMqU0E4fkbraczMbJl9ht-g1i7KCYR4QyraDrigsb4q1HKC5guI34vWgjFldoQ-otQhhOissBYXAr2-REGxbFWQc__f3ncuwBne2t80NO8qH4BhZ_c6cBcLkp3sONd5CekSet7RIcP9xH5OvZ6dX8Y3n--cOn-ey8dIrKoWxr6TR3dQO8aayzWgtdu0pKlntxEmqrGyGqhWItSEuFEpoyIZVUiwaqyooj8m6r24_NGhYu20fbmR792uLGROvN35HgV2YZb0yeGpWVyAKvHgQw_hghDWbtk8tjsgHimAybViqXExXP6Mt_0Os4YsjtGZZt1ZRJLTP1eks5jCmvsd2ZYdTc79bsdpvZF_vud-SfTWbgzRZIORSWgHsl_1P7BVRdr3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901701494</pqid></control><display><type>article</type><title>Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Moon, Hyunjin ; Lee, Habeom ; Kwon, Jinhyeong ; Suh, Young Duk ; Kim, Dong Kwan ; Ha, Inho ; Yeo, Junyeob ; Hong, Sukjoon ; Ko, Seung Hwan</creator><creatorcontrib>Moon, Hyunjin ; Lee, Habeom ; Kwon, Jinhyeong ; Suh, Young Duk ; Kim, Dong Kwan ; Ha, Inho ; Yeo, Junyeob ; Hong, Sukjoon ; Ko, Seung Hwan</creatorcontrib><description>Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep41981</identifier><identifier>PMID: 28155913</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301 ; 639/4077 ; 639/925 ; Capacitance ; Electrodes ; Energy storage ; Humanities and Social Sciences ; Light penetration ; multidisciplinary ; Nanotechnology ; Polymerization ; Polymers ; Redox potential ; Redox reactions ; Science ; Science (multidisciplinary) ; Silver</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.41981-41981, Article 41981</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f74c92c7be2bbaca99397c6441815c4e7a9b336d51fe4a035390134545dbe66a3</citedby><cites>FETCH-LOGICAL-c504t-f74c92c7be2bbaca99397c6441815c4e7a9b336d51fe4a035390134545dbe66a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290463/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290463/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28155913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Hyunjin</creatorcontrib><creatorcontrib>Lee, Habeom</creatorcontrib><creatorcontrib>Kwon, Jinhyeong</creatorcontrib><creatorcontrib>Suh, Young Duk</creatorcontrib><creatorcontrib>Kim, Dong Kwan</creatorcontrib><creatorcontrib>Ha, Inho</creatorcontrib><creatorcontrib>Yeo, Junyeob</creatorcontrib><creatorcontrib>Hong, Sukjoon</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><title>Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.</description><subject>639/166</subject><subject>639/301</subject><subject>639/4077</subject><subject>639/925</subject><subject>Capacitance</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Humanities and Social Sciences</subject><subject>Light penetration</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Redox potential</subject><subject>Redox reactions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silver</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1vEzEQhi0EolXpgT-AVuICqEv8uRtfkKLQAlJVkFrE0fI6s4nLxl7Guy059p_jkhIF8MW25pl33pkh5DmjbxkV00lC6CXTU_aIHHIqVckF54_33gfkOKVrmo_iOpNPyQGfMqU0E4fkbraczMbJl9ht-g1i7KCYR4QyraDrigsb4q1HKC5guI34vWgjFldoQ-otQhhOissBYXAr2-REGxbFWQc__f3ncuwBne2t80NO8qH4BhZ_c6cBcLkp3sONd5CekSet7RIcP9xH5OvZ6dX8Y3n--cOn-ey8dIrKoWxr6TR3dQO8aayzWgtdu0pKlntxEmqrGyGqhWItSEuFEpoyIZVUiwaqyooj8m6r24_NGhYu20fbmR792uLGROvN35HgV2YZb0yeGpWVyAKvHgQw_hghDWbtk8tjsgHimAybViqXExXP6Mt_0Os4YsjtGZZt1ZRJLTP1eks5jCmvsd2ZYdTc79bsdpvZF_vud-SfTWbgzRZIORSWgHsl_1P7BVRdr3w</recordid><startdate>20170203</startdate><enddate>20170203</enddate><creator>Moon, Hyunjin</creator><creator>Lee, Habeom</creator><creator>Kwon, Jinhyeong</creator><creator>Suh, Young Duk</creator><creator>Kim, Dong Kwan</creator><creator>Ha, Inho</creator><creator>Yeo, Junyeob</creator><creator>Hong, Sukjoon</creator><creator>Ko, Seung Hwan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170203</creationdate><title>Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices</title><author>Moon, Hyunjin ; Lee, Habeom ; Kwon, Jinhyeong ; Suh, Young Duk ; Kim, Dong Kwan ; Ha, Inho ; Yeo, Junyeob ; Hong, Sukjoon ; Ko, Seung Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f74c92c7be2bbaca99397c6441815c4e7a9b336d51fe4a035390134545dbe66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/166</topic><topic>639/301</topic><topic>639/4077</topic><topic>639/925</topic><topic>Capacitance</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Humanities and Social Sciences</topic><topic>Light penetration</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Redox potential</topic><topic>Redox reactions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Hyunjin</creatorcontrib><creatorcontrib>Lee, Habeom</creatorcontrib><creatorcontrib>Kwon, Jinhyeong</creatorcontrib><creatorcontrib>Suh, Young Duk</creatorcontrib><creatorcontrib>Kim, Dong Kwan</creatorcontrib><creatorcontrib>Ha, Inho</creatorcontrib><creatorcontrib>Yeo, Junyeob</creatorcontrib><creatorcontrib>Hong, Sukjoon</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Hyunjin</au><au>Lee, Habeom</au><au>Kwon, Jinhyeong</au><au>Suh, Young Duk</au><au>Kim, Dong Kwan</au><au>Ha, Inho</au><au>Yeo, Junyeob</au><au>Hong, Sukjoon</au><au>Ko, Seung Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-03</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>41981</spage><epage>41981</epage><pages>41981-41981</pages><artnum>41981</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28155913</pmid><doi>10.1038/srep41981</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-02, Vol.7 (1), p.41981-41981, Article 41981 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5290463 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/166 639/301 639/4077 639/925 Capacitance Electrodes Energy storage Humanities and Social Sciences Light penetration multidisciplinary Nanotechnology Polymerization Polymers Redox potential Redox reactions Science Science (multidisciplinary) Silver |
title | Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ag/Au/Polypyrrole%20Core-shell%20Nanowire%20Network%20for%20Transparent,%20Stretchable%20and%20Flexible%20Supercapacitor%20in%20Wearable%20Energy%20Devices&rft.jtitle=Scientific%20reports&rft.au=Moon,%20Hyunjin&rft.date=2017-02-03&rft.volume=7&rft.issue=1&rft.spage=41981&rft.epage=41981&rft.pages=41981-41981&rft.artnum=41981&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep41981&rft_dat=%3Cproquest_pubme%3E1865545362%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901701494&rft_id=info:pmid/28155913&rfr_iscdi=true |