Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress

Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-02, Vol.7 (1), p.41236, Article 41236
Hauptverfasser: Zheng, Xiaodong, Tan, Dun X., Allan, Andrew C., Zuo, Bixiao, Zhao, Yu, Reiter, Russel J., Wang, Lin, Wang, Zhi, Guo, Yan, Zhou, Jingzhe, Shan, Dongqian, Li, Qingtian, Han, Zhenhai, Kong, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 41236
container_title Scientific reports
container_volume 7
creator Zheng, Xiaodong
Tan, Dun X.
Allan, Andrew C.
Zuo, Bixiao
Zhao, Yu
Reiter, Russel J.
Wang, Lin
Wang, Zhi
Guo, Yan
Zhou, Jingzhe
Shan, Dongqian
Li, Qingtian
Han, Zhenhai
Kong, Jin
description Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N -acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the K m and V max of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions.
doi_str_mv 10.1038/srep41236
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5286529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901687841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-16a210db888399aa50f66e8e51b3602913efc2f4b2669d5f19f1a48aabe18b4c3</originalsourceid><addsrcrecordid>eNplkU9LAzEQxYMottQe_AIS8KRQTbLZmFwEKf6Dghc9h-xu0qbsJmuSFvrtTWktFecyA_PjzWMeAJcY3WFU8PsYdE8xKdgJGBJEywkpCDk9mgdgHOMS5SqJoFicgwHhmJaUiiFopovWB9-3KiZbw8r6uHFpoaON0BvY6VYl76yDyjXQpgitW_t2rTvtUp5hH3zSdbLebfEs4zJjgu9gVG2CMQUd4wU4M6qNerzvI_D18vw5fZvMPl7fp0-zSU0LniaYKYJRU3HOCyGUKpFhTHNd4qpgiAhcaFMTQyvCmGhKg4XBinKlKo15RetiBB53uv2q6nRTZ49BtbIPtlNhI72y8u_G2YWc-7UsCWf5OVngei8Q_PdKxySXfhVc9iyxQJjxB05xpm52VB18zO83hwsYyW0m8pBJZq-OLR3I3wQycLsDYl65uQ5HJ_-p_QCoi5iP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901687841</pqid></control><display><type>article</type><title>Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zheng, Xiaodong ; Tan, Dun X. ; Allan, Andrew C. ; Zuo, Bixiao ; Zhao, Yu ; Reiter, Russel J. ; Wang, Lin ; Wang, Zhi ; Guo, Yan ; Zhou, Jingzhe ; Shan, Dongqian ; Li, Qingtian ; Han, Zhenhai ; Kong, Jin</creator><creatorcontrib>Zheng, Xiaodong ; Tan, Dun X. ; Allan, Andrew C. ; Zuo, Bixiao ; Zhao, Yu ; Reiter, Russel J. ; Wang, Lin ; Wang, Zhi ; Guo, Yan ; Zhou, Jingzhe ; Shan, Dongqian ; Li, Qingtian ; Han, Zhenhai ; Kong, Jin</creatorcontrib><description>Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N -acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the K m and V max of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep41236</identifier><identifier>PMID: 28145449</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/19 ; 38 ; 42 ; 631/449/1734 ; 631/449/2661/2665 ; 82 ; 82/1 ; 82/80 ; Abiotic stress ; Adaptation, Physiological - drug effects ; Adaptation, Physiological - radiation effects ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - physiology ; Biomass ; Biosynthesis ; Chloroplasts ; Chloroplasts - metabolism ; Chloroplasts - radiation effects ; Crop production ; Environmental conditions ; Gene Expression Regulation, Plant - radiation effects ; Green Fluorescent Proteins - metabolism ; Humanities and Social Sciences ; Kinetics ; Light ; Light intensity ; Lipid peroxidation ; Malondialdehyde - metabolism ; Malus - genetics ; Malus - radiation effects ; Malus sieboldii zumi ; Melatonin ; Melatonin - biosynthesis ; Methyltransferase ; multidisciplinary ; N-Acetylserotonin ; Peroxidation ; Photosynthesis ; Photosynthesis - radiation effects ; Phylogeny ; Plant Leaves - metabolism ; Plant Leaves - radiation effects ; Plant protection ; Plant Proteins - genetics ; Plant Proteins - isolation &amp; purification ; Plant Proteins - metabolism ; Plants, Genetically Modified ; Protein biosynthesis ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Salt tolerance ; Salt-Tolerance - drug effects ; Salt-Tolerance - radiation effects ; Science ; Science (multidisciplinary) ; Sodium Chloride - pharmacology ; Stress, Physiological - drug effects ; Up-Regulation - genetics ; Up-Regulation - radiation effects ; Western blotting</subject><ispartof>Scientific reports, 2017-02, Vol.7 (1), p.41236, Article 41236</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-16a210db888399aa50f66e8e51b3602913efc2f4b2669d5f19f1a48aabe18b4c3</citedby><cites>FETCH-LOGICAL-c438t-16a210db888399aa50f66e8e51b3602913efc2f4b2669d5f19f1a48aabe18b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286529/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286529/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28145449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Xiaodong</creatorcontrib><creatorcontrib>Tan, Dun X.</creatorcontrib><creatorcontrib>Allan, Andrew C.</creatorcontrib><creatorcontrib>Zuo, Bixiao</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Reiter, Russel J.</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhou, Jingzhe</creatorcontrib><creatorcontrib>Shan, Dongqian</creatorcontrib><creatorcontrib>Li, Qingtian</creatorcontrib><creatorcontrib>Han, Zhenhai</creatorcontrib><creatorcontrib>Kong, Jin</creatorcontrib><title>Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N -acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the K m and V max of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions.</description><subject>13</subject><subject>14</subject><subject>14/19</subject><subject>38</subject><subject>42</subject><subject>631/449/1734</subject><subject>631/449/2661/2665</subject><subject>82</subject><subject>82/1</subject><subject>82/80</subject><subject>Abiotic stress</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - radiation effects</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>Chloroplasts - radiation effects</subject><subject>Crop production</subject><subject>Environmental conditions</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>Light</subject><subject>Light intensity</subject><subject>Lipid peroxidation</subject><subject>Malondialdehyde - metabolism</subject><subject>Malus - genetics</subject><subject>Malus - radiation effects</subject><subject>Malus sieboldii zumi</subject><subject>Melatonin</subject><subject>Melatonin - biosynthesis</subject><subject>Methyltransferase</subject><subject>multidisciplinary</subject><subject>N-Acetylserotonin</subject><subject>Peroxidation</subject><subject>Photosynthesis</subject><subject>Photosynthesis - radiation effects</subject><subject>Phylogeny</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - radiation effects</subject><subject>Plant protection</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - isolation &amp; purification</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Protein biosynthesis</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Salt tolerance</subject><subject>Salt-Tolerance - drug effects</subject><subject>Salt-Tolerance - radiation effects</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Physiological - drug effects</subject><subject>Up-Regulation - genetics</subject><subject>Up-Regulation - radiation effects</subject><subject>Western blotting</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU9LAzEQxYMottQe_AIS8KRQTbLZmFwEKf6Dghc9h-xu0qbsJmuSFvrtTWktFecyA_PjzWMeAJcY3WFU8PsYdE8xKdgJGBJEywkpCDk9mgdgHOMS5SqJoFicgwHhmJaUiiFopovWB9-3KiZbw8r6uHFpoaON0BvY6VYl76yDyjXQpgitW_t2rTvtUp5hH3zSdbLebfEs4zJjgu9gVG2CMQUd4wU4M6qNerzvI_D18vw5fZvMPl7fp0-zSU0LniaYKYJRU3HOCyGUKpFhTHNd4qpgiAhcaFMTQyvCmGhKg4XBinKlKo15RetiBB53uv2q6nRTZ49BtbIPtlNhI72y8u_G2YWc-7UsCWf5OVngei8Q_PdKxySXfhVc9iyxQJjxB05xpm52VB18zO83hwsYyW0m8pBJZq-OLR3I3wQycLsDYl65uQ5HJ_-p_QCoi5iP</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Zheng, Xiaodong</creator><creator>Tan, Dun X.</creator><creator>Allan, Andrew C.</creator><creator>Zuo, Bixiao</creator><creator>Zhao, Yu</creator><creator>Reiter, Russel J.</creator><creator>Wang, Lin</creator><creator>Wang, Zhi</creator><creator>Guo, Yan</creator><creator>Zhou, Jingzhe</creator><creator>Shan, Dongqian</creator><creator>Li, Qingtian</creator><creator>Han, Zhenhai</creator><creator>Kong, Jin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20170201</creationdate><title>Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress</title><author>Zheng, Xiaodong ; Tan, Dun X. ; Allan, Andrew C. ; Zuo, Bixiao ; Zhao, Yu ; Reiter, Russel J. ; Wang, Lin ; Wang, Zhi ; Guo, Yan ; Zhou, Jingzhe ; Shan, Dongqian ; Li, Qingtian ; Han, Zhenhai ; Kong, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-16a210db888399aa50f66e8e51b3602913efc2f4b2669d5f19f1a48aabe18b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13</topic><topic>14</topic><topic>14/19</topic><topic>38</topic><topic>42</topic><topic>631/449/1734</topic><topic>631/449/2661/2665</topic><topic>82</topic><topic>82/1</topic><topic>82/80</topic><topic>Abiotic stress</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - radiation effects</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>Chloroplasts - radiation effects</topic><topic>Crop production</topic><topic>Environmental conditions</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>Light</topic><topic>Light intensity</topic><topic>Lipid peroxidation</topic><topic>Malondialdehyde - metabolism</topic><topic>Malus - genetics</topic><topic>Malus - radiation effects</topic><topic>Malus sieboldii zumi</topic><topic>Melatonin</topic><topic>Melatonin - biosynthesis</topic><topic>Methyltransferase</topic><topic>multidisciplinary</topic><topic>N-Acetylserotonin</topic><topic>Peroxidation</topic><topic>Photosynthesis</topic><topic>Photosynthesis - radiation effects</topic><topic>Phylogeny</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - radiation effects</topic><topic>Plant protection</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - isolation &amp; purification</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Protein biosynthesis</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Salt tolerance</topic><topic>Salt-Tolerance - drug effects</topic><topic>Salt-Tolerance - radiation effects</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Physiological - drug effects</topic><topic>Up-Regulation - genetics</topic><topic>Up-Regulation - radiation effects</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaodong</creatorcontrib><creatorcontrib>Tan, Dun X.</creatorcontrib><creatorcontrib>Allan, Andrew C.</creatorcontrib><creatorcontrib>Zuo, Bixiao</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Reiter, Russel J.</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhou, Jingzhe</creatorcontrib><creatorcontrib>Shan, Dongqian</creatorcontrib><creatorcontrib>Li, Qingtian</creatorcontrib><creatorcontrib>Han, Zhenhai</creatorcontrib><creatorcontrib>Kong, Jin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaodong</au><au>Tan, Dun X.</au><au>Allan, Andrew C.</au><au>Zuo, Bixiao</au><au>Zhao, Yu</au><au>Reiter, Russel J.</au><au>Wang, Lin</au><au>Wang, Zhi</au><au>Guo, Yan</au><au>Zhou, Jingzhe</au><au>Shan, Dongqian</au><au>Li, Qingtian</au><au>Han, Zhenhai</au><au>Kong, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>41236</spage><pages>41236-</pages><artnum>41236</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N -acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the K m and V max of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28145449</pmid><doi>10.1038/srep41236</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-02, Vol.7 (1), p.41236, Article 41236
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5286529
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 13
14
14/19
38
42
631/449/1734
631/449/2661/2665
82
82/1
82/80
Abiotic stress
Adaptation, Physiological - drug effects
Adaptation, Physiological - radiation effects
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - physiology
Biomass
Biosynthesis
Chloroplasts
Chloroplasts - metabolism
Chloroplasts - radiation effects
Crop production
Environmental conditions
Gene Expression Regulation, Plant - radiation effects
Green Fluorescent Proteins - metabolism
Humanities and Social Sciences
Kinetics
Light
Light intensity
Lipid peroxidation
Malondialdehyde - metabolism
Malus - genetics
Malus - radiation effects
Malus sieboldii zumi
Melatonin
Melatonin - biosynthesis
Methyltransferase
multidisciplinary
N-Acetylserotonin
Peroxidation
Photosynthesis
Photosynthesis - radiation effects
Phylogeny
Plant Leaves - metabolism
Plant Leaves - radiation effects
Plant protection
Plant Proteins - genetics
Plant Proteins - isolation & purification
Plant Proteins - metabolism
Plants, Genetically Modified
Protein biosynthesis
Reactive oxygen species
Reactive Oxygen Species - metabolism
Salt tolerance
Salt-Tolerance - drug effects
Salt-Tolerance - radiation effects
Science
Science (multidisciplinary)
Sodium Chloride - pharmacology
Stress, Physiological - drug effects
Up-Regulation - genetics
Up-Regulation - radiation effects
Western blotting
title Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloroplastic%20biosynthesis%20of%20melatonin%20and%20its%20involvement%20in%20protection%20of%20plants%20from%20salt%20stress&rft.jtitle=Scientific%20reports&rft.au=Zheng,%20Xiaodong&rft.date=2017-02-01&rft.volume=7&rft.issue=1&rft.spage=41236&rft.pages=41236-&rft.artnum=41236&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep41236&rft_dat=%3Cproquest_pubme%3E1901687841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901687841&rft_id=info:pmid/28145449&rfr_iscdi=true