Architecture of the yeast Elongator complex
The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2017-02, Vol.18 (2), p.264-279 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 2 |
container_start_page | 264 |
container_title | EMBO reports |
container_volume | 18 |
creator | Dauden, Maria I Kosinski, Jan Kolaj‐Robin, Olga Desfosses, Ambroise Ori, Alessandro Faux, Celine Hoffmann, Niklas A Onuma, Osita F Breunig, Karin D Beck, Martin Sachse, Carsten Séraphin, Bertrand Glatt, Sebastian Müller, Christoph W |
description | The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.
Synopsis
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.
Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator.
A dense network of interactions connects all six Elongator subunits.
The enzymatically active Elp3 subunits are located in the center of this network.
Graphical Abstract
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex. |
doi_str_mv | 10.15252/embr.201643353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5286394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4311380691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</originalsourceid><addsrcrecordid>eNqFkc9LwzAcxYMo_j57k4IXRTbzo0kTD8KU6YSJIAreQhrTrdI2M2mn--_N7BxTEE8Jyee9vG8eAAcIdhHFFJ-ZMnVdDBGLCaFkDWyjmIkOQQlfX-wxRs9bYMf7VwghFQnfBFs4EUlMEr4NTntOj_Pa6LpxJrJZVI9NNDPK11G_sNVI1dZF2paTwnzsgY1MFd7sL9Zd8HTdf7wadIb3N7dXvWFHM0RIJ9PqJcsw4algnODUqBRmiUCCpjxRGWaUMpJSpYTgSAgNYyVUOFEx1DxNKNkFF63vpElL86JNVTtVyInLS-Vm0qpc_ryp8rEc2amkmDMi4mBw0hqMf8kGvaGcn0GMuaAcTlFgjxePOfvWGF_LMvfaFIWqjG28RJxixhnC81xHv9BX27gqfEWgGEFhLDGnzlpKO-u9M9kyAYLyqzQ5L00uSwuKw9V5l_x3SwE4b4H3vDCz__xk_-7yYdUdtmIfdNXIuJXUfwT6BE_0skc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863156395</pqid></control><display><type>article</type><title>Architecture of the yeast Elongator complex</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Dauden, Maria I ; Kosinski, Jan ; Kolaj‐Robin, Olga ; Desfosses, Ambroise ; Ori, Alessandro ; Faux, Celine ; Hoffmann, Niklas A ; Onuma, Osita F ; Breunig, Karin D ; Beck, Martin ; Sachse, Carsten ; Séraphin, Bertrand ; Glatt, Sebastian ; Müller, Christoph W</creator><creatorcontrib>Dauden, Maria I ; Kosinski, Jan ; Kolaj‐Robin, Olga ; Desfosses, Ambroise ; Ori, Alessandro ; Faux, Celine ; Hoffmann, Niklas A ; Onuma, Osita F ; Breunig, Karin D ; Beck, Martin ; Sachse, Carsten ; Séraphin, Bertrand ; Glatt, Sebastian ; Müller, Christoph W</creatorcontrib><description>The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.
Synopsis
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.
Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator.
A dense network of interactions connects all six Elongator subunits.
The enzymatically active Elp3 subunits are located in the center of this network.
Graphical Abstract
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201643353</identifier><identifier>PMID: 27974378</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biochemistry, Molecular Biology ; electron microscopy ; Elongator ; EMBO36 ; EMBO40 ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Life Sciences ; Mass spectrometry ; Microbiology ; Models, Molecular ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Multiprotein Complexes - ultrastructure ; Mutation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Protein Transport ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship ; tRNA modification ; Yeast ; Yeasts</subject><ispartof>EMBO reports, 2017-02, Vol.18 (2), p.264-279</ispartof><rights>The Authors. Published under the terms of the CC BY 4.0 license 2016</rights><rights>2016 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2016 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2017 EMBO</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</citedby><cites>FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</cites><orcidid>0000-0002-7397-1321 ; 0000-0002-1168-5143 ; 0000-0002-0319-3114 ; 0000-0003-2176-8337 ; 0000-0002-5168-1921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286394/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286394/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27931,27932,41127,42196,45581,45582,46416,46840,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27974378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02289580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dauden, Maria I</creatorcontrib><creatorcontrib>Kosinski, Jan</creatorcontrib><creatorcontrib>Kolaj‐Robin, Olga</creatorcontrib><creatorcontrib>Desfosses, Ambroise</creatorcontrib><creatorcontrib>Ori, Alessandro</creatorcontrib><creatorcontrib>Faux, Celine</creatorcontrib><creatorcontrib>Hoffmann, Niklas A</creatorcontrib><creatorcontrib>Onuma, Osita F</creatorcontrib><creatorcontrib>Breunig, Karin D</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Sachse, Carsten</creatorcontrib><creatorcontrib>Séraphin, Bertrand</creatorcontrib><creatorcontrib>Glatt, Sebastian</creatorcontrib><creatorcontrib>Müller, Christoph W</creatorcontrib><title>Architecture of the yeast Elongator complex</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.
Synopsis
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.
Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator.
A dense network of interactions connects all six Elongator subunits.
The enzymatically active Elp3 subunits are located in the center of this network.
Graphical Abstract
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.</description><subject>Biochemistry, Molecular Biology</subject><subject>electron microscopy</subject><subject>Elongator</subject><subject>EMBO36</subject><subject>EMBO40</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Protein Transport</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>tRNA modification</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9LwzAcxYMo_j57k4IXRTbzo0kTD8KU6YSJIAreQhrTrdI2M2mn--_N7BxTEE8Jyee9vG8eAAcIdhHFFJ-ZMnVdDBGLCaFkDWyjmIkOQQlfX-wxRs9bYMf7VwghFQnfBFs4EUlMEr4NTntOj_Pa6LpxJrJZVI9NNDPK11G_sNVI1dZF2paTwnzsgY1MFd7sL9Zd8HTdf7wadIb3N7dXvWFHM0RIJ9PqJcsw4algnODUqBRmiUCCpjxRGWaUMpJSpYTgSAgNYyVUOFEx1DxNKNkFF63vpElL86JNVTtVyInLS-Vm0qpc_ryp8rEc2amkmDMi4mBw0hqMf8kGvaGcn0GMuaAcTlFgjxePOfvWGF_LMvfaFIWqjG28RJxixhnC81xHv9BX27gqfEWgGEFhLDGnzlpKO-u9M9kyAYLyqzQ5L00uSwuKw9V5l_x3SwE4b4H3vDCz__xk_-7yYdUdtmIfdNXIuJXUfwT6BE_0skc</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Dauden, Maria I</creator><creator>Kosinski, Jan</creator><creator>Kolaj‐Robin, Olga</creator><creator>Desfosses, Ambroise</creator><creator>Ori, Alessandro</creator><creator>Faux, Celine</creator><creator>Hoffmann, Niklas A</creator><creator>Onuma, Osita F</creator><creator>Breunig, Karin D</creator><creator>Beck, Martin</creator><creator>Sachse, Carsten</creator><creator>Séraphin, Bertrand</creator><creator>Glatt, Sebastian</creator><creator>Müller, Christoph W</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7397-1321</orcidid><orcidid>https://orcid.org/0000-0002-1168-5143</orcidid><orcidid>https://orcid.org/0000-0002-0319-3114</orcidid><orcidid>https://orcid.org/0000-0003-2176-8337</orcidid><orcidid>https://orcid.org/0000-0002-5168-1921</orcidid></search><sort><creationdate>201702</creationdate><title>Architecture of the yeast Elongator complex</title><author>Dauden, Maria I ; Kosinski, Jan ; Kolaj‐Robin, Olga ; Desfosses, Ambroise ; Ori, Alessandro ; Faux, Celine ; Hoffmann, Niklas A ; Onuma, Osita F ; Breunig, Karin D ; Beck, Martin ; Sachse, Carsten ; Séraphin, Bertrand ; Glatt, Sebastian ; Müller, Christoph W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>electron microscopy</topic><topic>Elongator</topic><topic>EMBO36</topic><topic>EMBO40</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Protein Transport</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>tRNA modification</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauden, Maria I</creatorcontrib><creatorcontrib>Kosinski, Jan</creatorcontrib><creatorcontrib>Kolaj‐Robin, Olga</creatorcontrib><creatorcontrib>Desfosses, Ambroise</creatorcontrib><creatorcontrib>Ori, Alessandro</creatorcontrib><creatorcontrib>Faux, Celine</creatorcontrib><creatorcontrib>Hoffmann, Niklas A</creatorcontrib><creatorcontrib>Onuma, Osita F</creatorcontrib><creatorcontrib>Breunig, Karin D</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Sachse, Carsten</creatorcontrib><creatorcontrib>Séraphin, Bertrand</creatorcontrib><creatorcontrib>Glatt, Sebastian</creatorcontrib><creatorcontrib>Müller, Christoph W</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauden, Maria I</au><au>Kosinski, Jan</au><au>Kolaj‐Robin, Olga</au><au>Desfosses, Ambroise</au><au>Ori, Alessandro</au><au>Faux, Celine</au><au>Hoffmann, Niklas A</au><au>Onuma, Osita F</au><au>Breunig, Karin D</au><au>Beck, Martin</au><au>Sachse, Carsten</au><au>Séraphin, Bertrand</au><au>Glatt, Sebastian</au><au>Müller, Christoph W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture of the yeast Elongator complex</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2017-02</date><risdate>2017</risdate><volume>18</volume><issue>2</issue><spage>264</spage><epage>279</epage><pages>264-279</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.
Synopsis
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.
Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator.
A dense network of interactions connects all six Elongator subunits.
The enzymatically active Elp3 subunits are located in the center of this network.
Graphical Abstract
The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27974378</pmid><doi>10.15252/embr.201643353</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7397-1321</orcidid><orcidid>https://orcid.org/0000-0002-1168-5143</orcidid><orcidid>https://orcid.org/0000-0002-0319-3114</orcidid><orcidid>https://orcid.org/0000-0003-2176-8337</orcidid><orcidid>https://orcid.org/0000-0002-5168-1921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2017-02, Vol.18 (2), p.264-279 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5286394 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content; PubMed Central; Springer Nature OA/Free Journals |
subjects | Biochemistry, Molecular Biology electron microscopy Elongator EMBO36 EMBO40 Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Life Sciences Mass spectrometry Microbiology Models, Molecular Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Multiprotein Complexes - ultrastructure Mutation Protein Binding Protein Conformation Protein Multimerization Protein Subunits - chemistry Protein Subunits - metabolism Protein Transport Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Structure-Activity Relationship tRNA modification Yeast Yeasts |
title | Architecture of the yeast Elongator complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20of%20the%20yeast%20Elongator%20complex&rft.jtitle=EMBO%20reports&rft.au=Dauden,%20Maria%20I&rft.date=2017-02&rft.volume=18&rft.issue=2&rft.spage=264&rft.epage=279&rft.pages=264-279&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.15252/embr.201643353&rft_dat=%3Cproquest_pubme%3E4311380691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863156395&rft_id=info:pmid/27974378&rfr_iscdi=true |