Architecture of the yeast Elongator complex

The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2017-02, Vol.18 (2), p.264-279
Hauptverfasser: Dauden, Maria I, Kosinski, Jan, Kolaj‐Robin, Olga, Desfosses, Ambroise, Ori, Alessandro, Faux, Celine, Hoffmann, Niklas A, Onuma, Osita F, Breunig, Karin D, Beck, Martin, Sachse, Carsten, Séraphin, Bertrand, Glatt, Sebastian, Müller, Christoph W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 2
container_start_page 264
container_title EMBO reports
container_volume 18
creator Dauden, Maria I
Kosinski, Jan
Kolaj‐Robin, Olga
Desfosses, Ambroise
Ori, Alessandro
Faux, Celine
Hoffmann, Niklas A
Onuma, Osita F
Breunig, Karin D
Beck, Martin
Sachse, Carsten
Séraphin, Bertrand
Glatt, Sebastian
Müller, Christoph W
description The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator. Synopsis The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex. Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator. A dense network of interactions connects all six Elongator subunits. The enzymatically active Elp3 subunits are located in the center of this network. Graphical Abstract The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.
doi_str_mv 10.15252/embr.201643353
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5286394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4311380691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</originalsourceid><addsrcrecordid>eNqFkc9LwzAcxYMo_j57k4IXRTbzo0kTD8KU6YSJIAreQhrTrdI2M2mn--_N7BxTEE8Jyee9vG8eAAcIdhHFFJ-ZMnVdDBGLCaFkDWyjmIkOQQlfX-wxRs9bYMf7VwghFQnfBFs4EUlMEr4NTntOj_Pa6LpxJrJZVI9NNDPK11G_sNVI1dZF2paTwnzsgY1MFd7sL9Zd8HTdf7wadIb3N7dXvWFHM0RIJ9PqJcsw4algnODUqBRmiUCCpjxRGWaUMpJSpYTgSAgNYyVUOFEx1DxNKNkFF63vpElL86JNVTtVyInLS-Vm0qpc_ryp8rEc2amkmDMi4mBw0hqMf8kGvaGcn0GMuaAcTlFgjxePOfvWGF_LMvfaFIWqjG28RJxixhnC81xHv9BX27gqfEWgGEFhLDGnzlpKO-u9M9kyAYLyqzQ5L00uSwuKw9V5l_x3SwE4b4H3vDCz__xk_-7yYdUdtmIfdNXIuJXUfwT6BE_0skc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863156395</pqid></control><display><type>article</type><title>Architecture of the yeast Elongator complex</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Dauden, Maria I ; Kosinski, Jan ; Kolaj‐Robin, Olga ; Desfosses, Ambroise ; Ori, Alessandro ; Faux, Celine ; Hoffmann, Niklas A ; Onuma, Osita F ; Breunig, Karin D ; Beck, Martin ; Sachse, Carsten ; Séraphin, Bertrand ; Glatt, Sebastian ; Müller, Christoph W</creator><creatorcontrib>Dauden, Maria I ; Kosinski, Jan ; Kolaj‐Robin, Olga ; Desfosses, Ambroise ; Ori, Alessandro ; Faux, Celine ; Hoffmann, Niklas A ; Onuma, Osita F ; Breunig, Karin D ; Beck, Martin ; Sachse, Carsten ; Séraphin, Bertrand ; Glatt, Sebastian ; Müller, Christoph W</creatorcontrib><description>The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator. Synopsis The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex. Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator. A dense network of interactions connects all six Elongator subunits. The enzymatically active Elp3 subunits are located in the center of this network. Graphical Abstract The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201643353</identifier><identifier>PMID: 27974378</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biochemistry, Molecular Biology ; electron microscopy ; Elongator ; EMBO36 ; EMBO40 ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Life Sciences ; Mass spectrometry ; Microbiology ; Models, Molecular ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Multiprotein Complexes - ultrastructure ; Mutation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Protein Transport ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship ; tRNA modification ; Yeast ; Yeasts</subject><ispartof>EMBO reports, 2017-02, Vol.18 (2), p.264-279</ispartof><rights>The Authors. Published under the terms of the CC BY 4.0 license 2016</rights><rights>2016 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2016 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2017 EMBO</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</citedby><cites>FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</cites><orcidid>0000-0002-7397-1321 ; 0000-0002-1168-5143 ; 0000-0002-0319-3114 ; 0000-0003-2176-8337 ; 0000-0002-5168-1921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286394/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286394/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27931,27932,41127,42196,45581,45582,46416,46840,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27974378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02289580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dauden, Maria I</creatorcontrib><creatorcontrib>Kosinski, Jan</creatorcontrib><creatorcontrib>Kolaj‐Robin, Olga</creatorcontrib><creatorcontrib>Desfosses, Ambroise</creatorcontrib><creatorcontrib>Ori, Alessandro</creatorcontrib><creatorcontrib>Faux, Celine</creatorcontrib><creatorcontrib>Hoffmann, Niklas A</creatorcontrib><creatorcontrib>Onuma, Osita F</creatorcontrib><creatorcontrib>Breunig, Karin D</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Sachse, Carsten</creatorcontrib><creatorcontrib>Séraphin, Bertrand</creatorcontrib><creatorcontrib>Glatt, Sebastian</creatorcontrib><creatorcontrib>Müller, Christoph W</creatorcontrib><title>Architecture of the yeast Elongator complex</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator. Synopsis The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex. Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator. A dense network of interactions connects all six Elongator subunits. The enzymatically active Elp3 subunits are located in the center of this network. Graphical Abstract The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.</description><subject>Biochemistry, Molecular Biology</subject><subject>electron microscopy</subject><subject>Elongator</subject><subject>EMBO36</subject><subject>EMBO40</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Protein Transport</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>tRNA modification</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9LwzAcxYMo_j57k4IXRTbzo0kTD8KU6YSJIAreQhrTrdI2M2mn--_N7BxTEE8Jyee9vG8eAAcIdhHFFJ-ZMnVdDBGLCaFkDWyjmIkOQQlfX-wxRs9bYMf7VwghFQnfBFs4EUlMEr4NTntOj_Pa6LpxJrJZVI9NNDPK11G_sNVI1dZF2paTwnzsgY1MFd7sL9Zd8HTdf7wadIb3N7dXvWFHM0RIJ9PqJcsw4algnODUqBRmiUCCpjxRGWaUMpJSpYTgSAgNYyVUOFEx1DxNKNkFF63vpElL86JNVTtVyInLS-Vm0qpc_ryp8rEc2amkmDMi4mBw0hqMf8kGvaGcn0GMuaAcTlFgjxePOfvWGF_LMvfaFIWqjG28RJxixhnC81xHv9BX27gqfEWgGEFhLDGnzlpKO-u9M9kyAYLyqzQ5L00uSwuKw9V5l_x3SwE4b4H3vDCz__xk_-7yYdUdtmIfdNXIuJXUfwT6BE_0skc</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Dauden, Maria I</creator><creator>Kosinski, Jan</creator><creator>Kolaj‐Robin, Olga</creator><creator>Desfosses, Ambroise</creator><creator>Ori, Alessandro</creator><creator>Faux, Celine</creator><creator>Hoffmann, Niklas A</creator><creator>Onuma, Osita F</creator><creator>Breunig, Karin D</creator><creator>Beck, Martin</creator><creator>Sachse, Carsten</creator><creator>Séraphin, Bertrand</creator><creator>Glatt, Sebastian</creator><creator>Müller, Christoph W</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7397-1321</orcidid><orcidid>https://orcid.org/0000-0002-1168-5143</orcidid><orcidid>https://orcid.org/0000-0002-0319-3114</orcidid><orcidid>https://orcid.org/0000-0003-2176-8337</orcidid><orcidid>https://orcid.org/0000-0002-5168-1921</orcidid></search><sort><creationdate>201702</creationdate><title>Architecture of the yeast Elongator complex</title><author>Dauden, Maria I ; Kosinski, Jan ; Kolaj‐Robin, Olga ; Desfosses, Ambroise ; Ori, Alessandro ; Faux, Celine ; Hoffmann, Niklas A ; Onuma, Osita F ; Breunig, Karin D ; Beck, Martin ; Sachse, Carsten ; Séraphin, Bertrand ; Glatt, Sebastian ; Müller, Christoph W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6133-fcadff238b96832beab0f79195b87af265563b5aa998199c04a9a63ba40c8b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>electron microscopy</topic><topic>Elongator</topic><topic>EMBO36</topic><topic>EMBO40</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Protein Transport</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>tRNA modification</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauden, Maria I</creatorcontrib><creatorcontrib>Kosinski, Jan</creatorcontrib><creatorcontrib>Kolaj‐Robin, Olga</creatorcontrib><creatorcontrib>Desfosses, Ambroise</creatorcontrib><creatorcontrib>Ori, Alessandro</creatorcontrib><creatorcontrib>Faux, Celine</creatorcontrib><creatorcontrib>Hoffmann, Niklas A</creatorcontrib><creatorcontrib>Onuma, Osita F</creatorcontrib><creatorcontrib>Breunig, Karin D</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Sachse, Carsten</creatorcontrib><creatorcontrib>Séraphin, Bertrand</creatorcontrib><creatorcontrib>Glatt, Sebastian</creatorcontrib><creatorcontrib>Müller, Christoph W</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauden, Maria I</au><au>Kosinski, Jan</au><au>Kolaj‐Robin, Olga</au><au>Desfosses, Ambroise</au><au>Ori, Alessandro</au><au>Faux, Celine</au><au>Hoffmann, Niklas A</au><au>Onuma, Osita F</au><au>Breunig, Karin D</au><au>Beck, Martin</au><au>Sachse, Carsten</au><au>Séraphin, Bertrand</au><au>Glatt, Sebastian</au><au>Müller, Christoph W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture of the yeast Elongator complex</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2017-02</date><risdate>2017</risdate><volume>18</volume><issue>2</issue><spage>264</spage><epage>279</epage><pages>264-279</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator. Synopsis The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex. Elp456 assembles asymmetrically on the Elp123 sub‐complex to form holoElongator. A dense network of interactions connects all six Elongator subunits. The enzymatically active Elp3 subunits are located in the center of this network. Graphical Abstract The conserved Elongator complex specifically modifies tRNAs. An integrative modelling approach using data from negative‐stain EM and crosslinking mass spectrometry is used to obtain an architectural model of the fully assembled Elongator complex.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27974378</pmid><doi>10.15252/embr.201643353</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7397-1321</orcidid><orcidid>https://orcid.org/0000-0002-1168-5143</orcidid><orcidid>https://orcid.org/0000-0002-0319-3114</orcidid><orcidid>https://orcid.org/0000-0003-2176-8337</orcidid><orcidid>https://orcid.org/0000-0002-5168-1921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2017-02, Vol.18 (2), p.264-279
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5286394
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content; PubMed Central; Springer Nature OA/Free Journals
subjects Biochemistry, Molecular Biology
electron microscopy
Elongator
EMBO36
EMBO40
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Life Sciences
Mass spectrometry
Microbiology
Models, Molecular
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Multiprotein Complexes - ultrastructure
Mutation
Protein Binding
Protein Conformation
Protein Multimerization
Protein Subunits - chemistry
Protein Subunits - metabolism
Protein Transport
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Structure-Activity Relationship
tRNA modification
Yeast
Yeasts
title Architecture of the yeast Elongator complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20of%20the%20yeast%20Elongator%20complex&rft.jtitle=EMBO%20reports&rft.au=Dauden,%20Maria%20I&rft.date=2017-02&rft.volume=18&rft.issue=2&rft.spage=264&rft.epage=279&rft.pages=264-279&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.15252/embr.201643353&rft_dat=%3Cproquest_pubme%3E4311380691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863156395&rft_id=info:pmid/27974378&rfr_iscdi=true