Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment

[Display omitted] •A 2-D analytical model for estimating subslab oxygen availability is presented.•The analytical model replicates quite well 3-D numerical results.•The role of pervious and impervious foundations slab is investigated.•The site parameters affecting the development of subslab oxygen s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2016-07, Vol.312, p.84-96
Hauptverfasser: Verginelli, Iason, Yao, Yijun, Wang, Yue, Ma, Jie, Suuberg, Eric M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue
container_start_page 84
container_title Journal of hazardous materials
container_volume 312
creator Verginelli, Iason
Yao, Yijun
Wang, Yue
Ma, Jie
Suuberg, Eric M.
description [Display omitted] •A 2-D analytical model for estimating subslab oxygen availability is presented.•The analytical model replicates quite well 3-D numerical results.•The role of pervious and impervious foundations slab is investigated.•The site parameters affecting the development of subslab oxygen shadow are examined. Previous studies show that aerobic biodegradation can effectively reduce hydrocarbon soil gas concentrations by orders of magnitude. Increasingly, oxygen limited biodegradation is being included in petroleum vapor intrusion (PVI) guidance for risk assessment at leaking underground storage tank sites. The application of PVI risk screening tools is aided by the knowledge of subslab oxygen conditions, which, however, are not commonly measured during site investigations. Here we introduce an algebraically explicit analytical method that can estimate oxygen conditions beneath the building slab, for PVI scenarios with impervious or pervious building foundations. Simulation results by this new model are then used to illustrate the role of site-specific conditions in determining the oxygen replenishment below the building for both scenarios. Furthermore, critical slab-width-to-source-depth ratios and critical source depths for the establishment of a subslab “oxygen shadow” (i.e. anoxic zone below the building) are provided as a function of key parameters such as vapor source concentration, effective diffusion coefficients of concrete and building depth. For impervious slab scenarios the obtained results are shown in good agreement with findings by previous studies and further support the recommendation by U.S. EPA about the inapplicability of vertical exclusion distances for scenarios involving large buildings and high source concentrations. For pervious slabs, results by this new model indicate that even relatively low effective diffusion coefficients of concrete can facilitate the oxygen transport into the subsurface below the building and create oxygenated conditions below the whole slab foundation favorable for petroleum vapor biodegradation.
doi_str_mv 10.1016/j.jhazmat.2016.03.037
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5283078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030438941630259X</els_id><sourcerecordid>1790932023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-2672b3fc336815dfaaae14b8a5979659622f22613fbb65d3a95c9316de99afa63</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EomnhJ4D2yGWDP9b2-gJCVaFIlbjA2fLas4mjXTvY3oj21-MooYITlSzZo3nmnRm_CL0heE0wEe93693WPMymrGkN15jVI5-hFeklaxlj4jlaYYa7lvWqu0CXOe8wxkTy7iW6oLLWCKFWyN3k4quKD5umbKGJv-43EEwB1zzEAM0AAUzZNsPiJ3eExrgEV_kYcn2nZg8lxQmWuTmYfY19KGnJNd2YnCHnGUJ5hV6MZsrw-nxfoR-fb75f37Z33758vf5011oucWmpkHRgo63D94S70RgDpBt6w5VUgitB6UipIGwcBsEdM4pbxYhwoJQZjWBX6MNJd78MMzhbWycz6X2qG6Z7HY3X_2aC3-pNPGhOe4ZlXwXenQVS_LlALnr22cI0mQBxyZpIhRWjmLInoH0duhZ0T0G55Ex0uKL8hNoUc04wPg5PsD76rnf67Ls--q4xq0fWurd_b_5Y9cfoCnw8AVD__-Ah6Ww9BAvOJ7BFu-j_0-I3dfDEXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785753640</pqid></control><display><type>article</type><title>Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment</title><source>Access via ScienceDirect (Elsevier)</source><creator>Verginelli, Iason ; Yao, Yijun ; Wang, Yue ; Ma, Jie ; Suuberg, Eric M.</creator><creatorcontrib>Verginelli, Iason ; Yao, Yijun ; Wang, Yue ; Ma, Jie ; Suuberg, Eric M.</creatorcontrib><description>[Display omitted] •A 2-D analytical model for estimating subslab oxygen availability is presented.•The analytical model replicates quite well 3-D numerical results.•The role of pervious and impervious foundations slab is investigated.•The site parameters affecting the development of subslab oxygen shadow are examined. Previous studies show that aerobic biodegradation can effectively reduce hydrocarbon soil gas concentrations by orders of magnitude. Increasingly, oxygen limited biodegradation is being included in petroleum vapor intrusion (PVI) guidance for risk assessment at leaking underground storage tank sites. The application of PVI risk screening tools is aided by the knowledge of subslab oxygen conditions, which, however, are not commonly measured during site investigations. Here we introduce an algebraically explicit analytical method that can estimate oxygen conditions beneath the building slab, for PVI scenarios with impervious or pervious building foundations. Simulation results by this new model are then used to illustrate the role of site-specific conditions in determining the oxygen replenishment below the building for both scenarios. Furthermore, critical slab-width-to-source-depth ratios and critical source depths for the establishment of a subslab “oxygen shadow” (i.e. anoxic zone below the building) are provided as a function of key parameters such as vapor source concentration, effective diffusion coefficients of concrete and building depth. For impervious slab scenarios the obtained results are shown in good agreement with findings by previous studies and further support the recommendation by U.S. EPA about the inapplicability of vertical exclusion distances for scenarios involving large buildings and high source concentrations. For pervious slabs, results by this new model indicate that even relatively low effective diffusion coefficients of concrete can facilitate the oxygen transport into the subsurface below the building and create oxygenated conditions below the whole slab foundation favorable for petroleum vapor biodegradation.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2016.03.037</identifier><identifier>PMID: 27016669</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aerobic biodegradation ; Biodegradation ; Buildings ; Crude oil ; Foundations ; Mathematical models ; Oxygen ; Oxygenated ; Petroleum vapor intrusion ; Slabs ; Subslab</subject><ispartof>Journal of hazardous materials, 2016-07, Vol.312, p.84-96</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-2672b3fc336815dfaaae14b8a5979659622f22613fbb65d3a95c9316de99afa63</citedby><cites>FETCH-LOGICAL-c570t-2672b3fc336815dfaaae14b8a5979659622f22613fbb65d3a95c9316de99afa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2016.03.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27016669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verginelli, Iason</creatorcontrib><creatorcontrib>Yao, Yijun</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Suuberg, Eric M.</creatorcontrib><title>Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>[Display omitted] •A 2-D analytical model for estimating subslab oxygen availability is presented.•The analytical model replicates quite well 3-D numerical results.•The role of pervious and impervious foundations slab is investigated.•The site parameters affecting the development of subslab oxygen shadow are examined. Previous studies show that aerobic biodegradation can effectively reduce hydrocarbon soil gas concentrations by orders of magnitude. Increasingly, oxygen limited biodegradation is being included in petroleum vapor intrusion (PVI) guidance for risk assessment at leaking underground storage tank sites. The application of PVI risk screening tools is aided by the knowledge of subslab oxygen conditions, which, however, are not commonly measured during site investigations. Here we introduce an algebraically explicit analytical method that can estimate oxygen conditions beneath the building slab, for PVI scenarios with impervious or pervious building foundations. Simulation results by this new model are then used to illustrate the role of site-specific conditions in determining the oxygen replenishment below the building for both scenarios. Furthermore, critical slab-width-to-source-depth ratios and critical source depths for the establishment of a subslab “oxygen shadow” (i.e. anoxic zone below the building) are provided as a function of key parameters such as vapor source concentration, effective diffusion coefficients of concrete and building depth. For impervious slab scenarios the obtained results are shown in good agreement with findings by previous studies and further support the recommendation by U.S. EPA about the inapplicability of vertical exclusion distances for scenarios involving large buildings and high source concentrations. For pervious slabs, results by this new model indicate that even relatively low effective diffusion coefficients of concrete can facilitate the oxygen transport into the subsurface below the building and create oxygenated conditions below the whole slab foundation favorable for petroleum vapor biodegradation.</description><subject>Aerobic biodegradation</subject><subject>Biodegradation</subject><subject>Buildings</subject><subject>Crude oil</subject><subject>Foundations</subject><subject>Mathematical models</subject><subject>Oxygen</subject><subject>Oxygenated</subject><subject>Petroleum vapor intrusion</subject><subject>Slabs</subject><subject>Subslab</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EomnhJ4D2yGWDP9b2-gJCVaFIlbjA2fLas4mjXTvY3oj21-MooYITlSzZo3nmnRm_CL0heE0wEe93693WPMymrGkN15jVI5-hFeklaxlj4jlaYYa7lvWqu0CXOe8wxkTy7iW6oLLWCKFWyN3k4quKD5umbKGJv-43EEwB1zzEAM0AAUzZNsPiJ3eExrgEV_kYcn2nZg8lxQmWuTmYfY19KGnJNd2YnCHnGUJ5hV6MZsrw-nxfoR-fb75f37Z33758vf5011oucWmpkHRgo63D94S70RgDpBt6w5VUgitB6UipIGwcBsEdM4pbxYhwoJQZjWBX6MNJd78MMzhbWycz6X2qG6Z7HY3X_2aC3-pNPGhOe4ZlXwXenQVS_LlALnr22cI0mQBxyZpIhRWjmLInoH0duhZ0T0G55Ex0uKL8hNoUc04wPg5PsD76rnf67Ls--q4xq0fWurd_b_5Y9cfoCnw8AVD__-Ah6Ww9BAvOJ7BFu-j_0-I3dfDEXA</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Verginelli, Iason</creator><creator>Yao, Yijun</creator><creator>Wang, Yue</creator><creator>Ma, Jie</creator><creator>Suuberg, Eric M.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20160715</creationdate><title>Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment</title><author>Verginelli, Iason ; Yao, Yijun ; Wang, Yue ; Ma, Jie ; Suuberg, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-2672b3fc336815dfaaae14b8a5979659622f22613fbb65d3a95c9316de99afa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerobic biodegradation</topic><topic>Biodegradation</topic><topic>Buildings</topic><topic>Crude oil</topic><topic>Foundations</topic><topic>Mathematical models</topic><topic>Oxygen</topic><topic>Oxygenated</topic><topic>Petroleum vapor intrusion</topic><topic>Slabs</topic><topic>Subslab</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verginelli, Iason</creatorcontrib><creatorcontrib>Yao, Yijun</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Suuberg, Eric M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verginelli, Iason</au><au>Yao, Yijun</au><au>Wang, Yue</au><au>Ma, Jie</au><au>Suuberg, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2016-07-15</date><risdate>2016</risdate><volume>312</volume><spage>84</spage><epage>96</epage><pages>84-96</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>[Display omitted] •A 2-D analytical model for estimating subslab oxygen availability is presented.•The analytical model replicates quite well 3-D numerical results.•The role of pervious and impervious foundations slab is investigated.•The site parameters affecting the development of subslab oxygen shadow are examined. Previous studies show that aerobic biodegradation can effectively reduce hydrocarbon soil gas concentrations by orders of magnitude. Increasingly, oxygen limited biodegradation is being included in petroleum vapor intrusion (PVI) guidance for risk assessment at leaking underground storage tank sites. The application of PVI risk screening tools is aided by the knowledge of subslab oxygen conditions, which, however, are not commonly measured during site investigations. Here we introduce an algebraically explicit analytical method that can estimate oxygen conditions beneath the building slab, for PVI scenarios with impervious or pervious building foundations. Simulation results by this new model are then used to illustrate the role of site-specific conditions in determining the oxygen replenishment below the building for both scenarios. Furthermore, critical slab-width-to-source-depth ratios and critical source depths for the establishment of a subslab “oxygen shadow” (i.e. anoxic zone below the building) are provided as a function of key parameters such as vapor source concentration, effective diffusion coefficients of concrete and building depth. For impervious slab scenarios the obtained results are shown in good agreement with findings by previous studies and further support the recommendation by U.S. EPA about the inapplicability of vertical exclusion distances for scenarios involving large buildings and high source concentrations. For pervious slabs, results by this new model indicate that even relatively low effective diffusion coefficients of concrete can facilitate the oxygen transport into the subsurface below the building and create oxygenated conditions below the whole slab foundation favorable for petroleum vapor biodegradation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27016669</pmid><doi>10.1016/j.jhazmat.2016.03.037</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2016-07, Vol.312, p.84-96
issn 0304-3894
1873-3336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5283078
source Access via ScienceDirect (Elsevier)
subjects Aerobic biodegradation
Biodegradation
Buildings
Crude oil
Foundations
Mathematical models
Oxygen
Oxygenated
Petroleum vapor intrusion
Slabs
Subslab
title Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20oxygenated%20zone%20beneath%20building%20foundations%20for%20petroleum%20vapor%20intrusion%20assessment&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Verginelli,%20Iason&rft.date=2016-07-15&rft.volume=312&rft.spage=84&rft.epage=96&rft.pages=84-96&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2016.03.037&rft_dat=%3Cproquest_pubme%3E1790932023%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785753640&rft_id=info:pmid/27016669&rft_els_id=S030438941630259X&rfr_iscdi=true