Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model

BACKGROUND AND PURPOSE—Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3 cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stroke (1970) 2017-02, Vol.48 (2), p.428-435
Hauptverfasser: Uchida, Hiroki, Niizuma, Kuniyasu, Kushida, Yoshihiro, Wakao, Shohei, Tominaga, Teiji, Borlongan, Cesario V, Dezawa, Mari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 2
container_start_page 428
container_title Stroke (1970)
container_volume 48
creator Uchida, Hiroki
Niizuma, Kuniyasu
Kushida, Yoshihiro
Wakao, Shohei
Tominaga, Teiji
Borlongan, Cesario V
Dezawa, Mari
description BACKGROUND AND PURPOSE—Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3 cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological disease models, muse cells exert repair effects, but the exact mechanism remains inconclusive. METHODS—We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human bone marrow-muse cells into the perilesion brain at 2 weeks after lacunar infarction in immunodeficient mice. RESULTS—Approximately 28% of initially transplanted muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (≈62%), MAP2 (≈30%), and GST-pi (≈12%). Dextran tracing revealed connections between host neurons and muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side, and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human-specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. CONCLUSIONS—Transplantation at the delayed subacute phase showed muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke.
doi_str_mv 10.1161/STROKEAHA.116.014950
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5262965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851301670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5740-8c13b31013f03612e638cca0893560f3803005d5ab4a5aaf70d2f92c9927f0133</originalsourceid><addsrcrecordid>eNp9UU1vEzEUtBCIpoV_gJCPXLZ9ttfe9QUpigpBpC1qytlynLdkqbMu_qDqv-9GaSO49PQ0ejPznmYI-cDglDHFzpY311ffz6fz6Q6eAqu1hFdkwiSvq1rx9jWZAAhd8VrrI3Kc0m8A4KKVb8kRb7TWTKgJ-TEvWzvQi5KQztD7RK_RhSHlWFyml1hiGKynsz660uf4QPuBLsvKupKRLsYx2EiXOYZbpBdhjf4dedNZn_D90zwhP7-c38zm1eLq67fZdFE52dRQtY6JlWDARAdCMY5KtM5ZaLWQCjrRggCQa2lXtZXWdg2seae505o33agSJ-Tz3veurLa4djjkaL25i_3WxgcTbG_-3wz9xvwKf43kimslR4NPTwYx_CmYstn2yY0R2AFDSYa1kglgqoGRWu-pLoaUInaHMwzMrgxzKGMHzb6MUfbx3xcPouf0R0K7J9wHnzGmW1_uMZoNWp83L3s_AkqCmCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851301670</pqid></control><display><type>article</type><title>Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Uchida, Hiroki ; Niizuma, Kuniyasu ; Kushida, Yoshihiro ; Wakao, Shohei ; Tominaga, Teiji ; Borlongan, Cesario V ; Dezawa, Mari</creator><creatorcontrib>Uchida, Hiroki ; Niizuma, Kuniyasu ; Kushida, Yoshihiro ; Wakao, Shohei ; Tominaga, Teiji ; Borlongan, Cesario V ; Dezawa, Mari</creatorcontrib><description>BACKGROUND AND PURPOSE—Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3 cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological disease models, muse cells exert repair effects, but the exact mechanism remains inconclusive. METHODS—We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human bone marrow-muse cells into the perilesion brain at 2 weeks after lacunar infarction in immunodeficient mice. RESULTS—Approximately 28% of initially transplanted muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (≈62%), MAP2 (≈30%), and GST-pi (≈12%). Dextran tracing revealed connections between host neurons and muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side, and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human-specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. CONCLUSIONS—Transplantation at the delayed subacute phase showed muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke.</description><identifier>ISSN: 0039-2499</identifier><identifier>EISSN: 1524-4628</identifier><identifier>DOI: 10.1161/STROKEAHA.116.014950</identifier><identifier>PMID: 27999136</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Animals ; Brain - cytology ; Brain - pathology ; Brain - physiology ; Cell Lineage ; Disease Models, Animal ; Humans ; Male ; Mesenchymal Stem Cell Transplantation - methods ; Mesenchymal Stromal Cells - physiology ; Mice ; Mice, SCID ; Mice, Transgenic ; Nerve Net - physiology ; Stroke, Lacunar - pathology ; Stroke, Lacunar - therapy</subject><ispartof>Stroke (1970), 2017-02, Vol.48 (2), p.428-435</ispartof><rights>2017 American Heart Association, Inc.</rights><rights>2016 The Authors.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5740-8c13b31013f03612e638cca0893560f3803005d5ab4a5aaf70d2f92c9927f0133</citedby><cites>FETCH-LOGICAL-c5740-8c13b31013f03612e638cca0893560f3803005d5ab4a5aaf70d2f92c9927f0133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3687,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27999136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uchida, Hiroki</creatorcontrib><creatorcontrib>Niizuma, Kuniyasu</creatorcontrib><creatorcontrib>Kushida, Yoshihiro</creatorcontrib><creatorcontrib>Wakao, Shohei</creatorcontrib><creatorcontrib>Tominaga, Teiji</creatorcontrib><creatorcontrib>Borlongan, Cesario V</creatorcontrib><creatorcontrib>Dezawa, Mari</creatorcontrib><title>Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model</title><title>Stroke (1970)</title><addtitle>Stroke</addtitle><description>BACKGROUND AND PURPOSE—Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3 cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological disease models, muse cells exert repair effects, but the exact mechanism remains inconclusive. METHODS—We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human bone marrow-muse cells into the perilesion brain at 2 weeks after lacunar infarction in immunodeficient mice. RESULTS—Approximately 28% of initially transplanted muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (≈62%), MAP2 (≈30%), and GST-pi (≈12%). Dextran tracing revealed connections between host neurons and muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side, and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human-specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. CONCLUSIONS—Transplantation at the delayed subacute phase showed muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke.</description><subject>Animals</subject><subject>Brain - cytology</subject><subject>Brain - pathology</subject><subject>Brain - physiology</subject><subject>Cell Lineage</subject><subject>Disease Models, Animal</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchymal Stem Cell Transplantation - methods</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Mice, Transgenic</subject><subject>Nerve Net - physiology</subject><subject>Stroke, Lacunar - pathology</subject><subject>Stroke, Lacunar - therapy</subject><issn>0039-2499</issn><issn>1524-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vEzEUtBCIpoV_gJCPXLZ9ttfe9QUpigpBpC1qytlynLdkqbMu_qDqv-9GaSO49PQ0ejPznmYI-cDglDHFzpY311ffz6fz6Q6eAqu1hFdkwiSvq1rx9jWZAAhd8VrrI3Kc0m8A4KKVb8kRb7TWTKgJ-TEvWzvQi5KQztD7RK_RhSHlWFyml1hiGKynsz660uf4QPuBLsvKupKRLsYx2EiXOYZbpBdhjf4dedNZn_D90zwhP7-c38zm1eLq67fZdFE52dRQtY6JlWDARAdCMY5KtM5ZaLWQCjrRggCQa2lXtZXWdg2seae505o33agSJ-Tz3veurLa4djjkaL25i_3WxgcTbG_-3wz9xvwKf43kimslR4NPTwYx_CmYstn2yY0R2AFDSYa1kglgqoGRWu-pLoaUInaHMwzMrgxzKGMHzb6MUfbx3xcPouf0R0K7J9wHnzGmW1_uMZoNWp83L3s_AkqCmCs</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Uchida, Hiroki</creator><creator>Niizuma, Kuniyasu</creator><creator>Kushida, Yoshihiro</creator><creator>Wakao, Shohei</creator><creator>Tominaga, Teiji</creator><creator>Borlongan, Cesario V</creator><creator>Dezawa, Mari</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model</title><author>Uchida, Hiroki ; Niizuma, Kuniyasu ; Kushida, Yoshihiro ; Wakao, Shohei ; Tominaga, Teiji ; Borlongan, Cesario V ; Dezawa, Mari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5740-8c13b31013f03612e638cca0893560f3803005d5ab4a5aaf70d2f92c9927f0133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Brain - cytology</topic><topic>Brain - pathology</topic><topic>Brain - physiology</topic><topic>Cell Lineage</topic><topic>Disease Models, Animal</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchymal Stem Cell Transplantation - methods</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Mice, Transgenic</topic><topic>Nerve Net - physiology</topic><topic>Stroke, Lacunar - pathology</topic><topic>Stroke, Lacunar - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uchida, Hiroki</creatorcontrib><creatorcontrib>Niizuma, Kuniyasu</creatorcontrib><creatorcontrib>Kushida, Yoshihiro</creatorcontrib><creatorcontrib>Wakao, Shohei</creatorcontrib><creatorcontrib>Tominaga, Teiji</creatorcontrib><creatorcontrib>Borlongan, Cesario V</creatorcontrib><creatorcontrib>Dezawa, Mari</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stroke (1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uchida, Hiroki</au><au>Niizuma, Kuniyasu</au><au>Kushida, Yoshihiro</au><au>Wakao, Shohei</au><au>Tominaga, Teiji</au><au>Borlongan, Cesario V</au><au>Dezawa, Mari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model</atitle><jtitle>Stroke (1970)</jtitle><addtitle>Stroke</addtitle><date>2017-02</date><risdate>2017</risdate><volume>48</volume><issue>2</issue><spage>428</spage><epage>435</epage><pages>428-435</pages><issn>0039-2499</issn><eissn>1524-4628</eissn><abstract>BACKGROUND AND PURPOSE—Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3 cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological disease models, muse cells exert repair effects, but the exact mechanism remains inconclusive. METHODS—We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human bone marrow-muse cells into the perilesion brain at 2 weeks after lacunar infarction in immunodeficient mice. RESULTS—Approximately 28% of initially transplanted muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (≈62%), MAP2 (≈30%), and GST-pi (≈12%). Dextran tracing revealed connections between host neurons and muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side, and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human-specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. CONCLUSIONS—Transplantation at the delayed subacute phase showed muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>27999136</pmid><doi>10.1161/STROKEAHA.116.014950</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-2499
ispartof Stroke (1970), 2017-02, Vol.48 (2), p.428-435
issn 0039-2499
1524-4628
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5262965
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Animals
Brain - cytology
Brain - pathology
Brain - physiology
Cell Lineage
Disease Models, Animal
Humans
Male
Mesenchymal Stem Cell Transplantation - methods
Mesenchymal Stromal Cells - physiology
Mice
Mice, SCID
Mice, Transgenic
Nerve Net - physiology
Stroke, Lacunar - pathology
Stroke, Lacunar - therapy
title Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Muse%20Cells%20Reconstruct%20Neuronal%20Circuitry%20in%20Subacute%20Lacunar%20Stroke%20Model&rft.jtitle=Stroke%20(1970)&rft.au=Uchida,%20Hiroki&rft.date=2017-02&rft.volume=48&rft.issue=2&rft.spage=428&rft.epage=435&rft.pages=428-435&rft.issn=0039-2499&rft.eissn=1524-4628&rft_id=info:doi/10.1161/STROKEAHA.116.014950&rft_dat=%3Cproquest_pubme%3E1851301670%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851301670&rft_id=info:pmid/27999136&rfr_iscdi=true