Dynamic epigenetic mode analysis using spatial temporal clustering

Differentiation of human embryonic stem cells requires precise control of gene expression that depends on specific spatial and temporal epigenetic regulation. Recently available temporal epigenomic data derived from cellular differentiation processes provides an unprecedented opportunity for charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2016-12, Vol.17 (Suppl 17), p.537-537, Article 537
Hauptverfasser: Gan, YangLan, Tao, Han, Zou, Guobing, Yan, Cairong, Guan, Jihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue Suppl 17
container_start_page 537
container_title BMC bioinformatics
container_volume 17
creator Gan, YangLan
Tao, Han
Zou, Guobing
Yan, Cairong
Guan, Jihong
description Differentiation of human embryonic stem cells requires precise control of gene expression that depends on specific spatial and temporal epigenetic regulation. Recently available temporal epigenomic data derived from cellular differentiation processes provides an unprecedented opportunity for characterizing fundamental properties of epigenomic dynamics and revealing regulatory roles of epigenetic modifications. This paper presents a spatial temporal clustering approach, named STCluster, which exploits the temporal variation information of epigenomes to characterize dynamic epigenetic mode during cellular differentiation. This approach identifies significant spatial temporal patterns of epigenetic modifications along human embryonic stem cell differentiation and cluster regulatory sequences by their spatial temporal epigenetic patterns. The results show that this approach is effective in capturing epigenetic modification patterns associated with specific cell types. In addition, STCluster allows straightforward identification of coherent epigenetic modes in multiple cell types, indicating the ability in the establishment of the most conserved epigenetic signatures during cellular differentiation process.
doi_str_mv 10.1186/s12859-016-1331-z
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5259871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A474876009</galeid><sourcerecordid>A474876009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-9483772b0bac42a333fd1b37b868517b072394d502c85bba2c19c23a3501c3ae3</originalsourceid><addsrcrecordid>eNptkUtr3TAQhUVpaR7tD-imGLppFk40kmXJm0KSvgKBQB9rIctjV8WWXEsuvfn10eWmIReCFho03zmM5hDyBugpgKrPIjAlmpJCXQLnUN4-I4dQSSgZUPH8UX1AjmL8TSlIRcVLcsAUCFHz6pBcfNx4Mzlb4OwG9JhyOYUOC-PNuIkuFmt0fijibJIzY5FwmsOSCzuuMeGSe6_Ii96MEV_f38fk5-dPPy6_ltc3X64uz69LKyhNZVMpLiVraWtsxQznvO-g5bJVtRIgWyoZb6pOUGaVaFvDLDSWccMFBcsN8mPyYec7r-2EnUWf8iB6Xtxklo0Oxun9jne_9BD-asFEoyRkg_f3Bkv4s2JMenLR4jgaj2GNOq9UCMZYxTP6bocOZkTtfB-yo93i-rySlZI1pU2mTp-g8ukwrzR47F1-3xOc7Akyk_BfGswao776_m2fhR1rlxDjgv3DT4Hqbfx6F7_O8ett_Po2a94-XtGD4n_e_A5eJKnV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865522243</pqid></control><display><type>article</type><title>Dynamic epigenetic mode analysis using spatial temporal clustering</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Gan, YangLan ; Tao, Han ; Zou, Guobing ; Yan, Cairong ; Guan, Jihong</creator><creatorcontrib>Gan, YangLan ; Tao, Han ; Zou, Guobing ; Yan, Cairong ; Guan, Jihong</creatorcontrib><description>Differentiation of human embryonic stem cells requires precise control of gene expression that depends on specific spatial and temporal epigenetic regulation. Recently available temporal epigenomic data derived from cellular differentiation processes provides an unprecedented opportunity for characterizing fundamental properties of epigenomic dynamics and revealing regulatory roles of epigenetic modifications. This paper presents a spatial temporal clustering approach, named STCluster, which exploits the temporal variation information of epigenomes to characterize dynamic epigenetic mode during cellular differentiation. This approach identifies significant spatial temporal patterns of epigenetic modifications along human embryonic stem cell differentiation and cluster regulatory sequences by their spatial temporal epigenetic patterns. The results show that this approach is effective in capturing epigenetic modification patterns associated with specific cell types. In addition, STCluster allows straightforward identification of coherent epigenetic modes in multiple cell types, indicating the ability in the establishment of the most conserved epigenetic signatures during cellular differentiation process.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-016-1331-z</identifier><identifier>PMID: 28155634</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Cell differentiation ; Cell Differentiation - genetics ; Cluster Analysis ; DNA Methylation ; Embryonic stem cells ; Embryonic Stem Cells - metabolism ; Embryonic Stem Cells - physiology ; Epigenesis, Genetic ; Epigenetic inheritance ; Gene Expression Regulation, Developmental ; Genetic aspects ; Histones - metabolism ; Humans ; Physiological aspects</subject><ispartof>BMC bioinformatics, 2016-12, Vol.17 (Suppl 17), p.537-537, Article 537</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-9483772b0bac42a333fd1b37b868517b072394d502c85bba2c19c23a3501c3ae3</citedby><cites>FETCH-LOGICAL-c500t-9483772b0bac42a333fd1b37b868517b072394d502c85bba2c19c23a3501c3ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259871/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259871/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28155634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, YangLan</creatorcontrib><creatorcontrib>Tao, Han</creatorcontrib><creatorcontrib>Zou, Guobing</creatorcontrib><creatorcontrib>Yan, Cairong</creatorcontrib><creatorcontrib>Guan, Jihong</creatorcontrib><title>Dynamic epigenetic mode analysis using spatial temporal clustering</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Differentiation of human embryonic stem cells requires precise control of gene expression that depends on specific spatial and temporal epigenetic regulation. Recently available temporal epigenomic data derived from cellular differentiation processes provides an unprecedented opportunity for characterizing fundamental properties of epigenomic dynamics and revealing regulatory roles of epigenetic modifications. This paper presents a spatial temporal clustering approach, named STCluster, which exploits the temporal variation information of epigenomes to characterize dynamic epigenetic mode during cellular differentiation. This approach identifies significant spatial temporal patterns of epigenetic modifications along human embryonic stem cell differentiation and cluster regulatory sequences by their spatial temporal epigenetic patterns. The results show that this approach is effective in capturing epigenetic modification patterns associated with specific cell types. In addition, STCluster allows straightforward identification of coherent epigenetic modes in multiple cell types, indicating the ability in the establishment of the most conserved epigenetic signatures during cellular differentiation process.</description><subject>Analysis</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cluster Analysis</subject><subject>DNA Methylation</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic aspects</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Physiological aspects</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtr3TAQhUVpaR7tD-imGLppFk40kmXJm0KSvgKBQB9rIctjV8WWXEsuvfn10eWmIReCFho03zmM5hDyBugpgKrPIjAlmpJCXQLnUN4-I4dQSSgZUPH8UX1AjmL8TSlIRcVLcsAUCFHz6pBcfNx4Mzlb4OwG9JhyOYUOC-PNuIkuFmt0fijibJIzY5FwmsOSCzuuMeGSe6_Ii96MEV_f38fk5-dPPy6_ltc3X64uz69LKyhNZVMpLiVraWtsxQznvO-g5bJVtRIgWyoZb6pOUGaVaFvDLDSWccMFBcsN8mPyYec7r-2EnUWf8iB6Xtxklo0Oxun9jne_9BD-asFEoyRkg_f3Bkv4s2JMenLR4jgaj2GNOq9UCMZYxTP6bocOZkTtfB-yo93i-rySlZI1pU2mTp-g8ukwrzR47F1-3xOc7Akyk_BfGswao776_m2fhR1rlxDjgv3DT4Hqbfx6F7_O8ett_Po2a94-XtGD4n_e_A5eJKnV</recordid><startdate>20161223</startdate><enddate>20161223</enddate><creator>Gan, YangLan</creator><creator>Tao, Han</creator><creator>Zou, Guobing</creator><creator>Yan, Cairong</creator><creator>Guan, Jihong</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161223</creationdate><title>Dynamic epigenetic mode analysis using spatial temporal clustering</title><author>Gan, YangLan ; Tao, Han ; Zou, Guobing ; Yan, Cairong ; Guan, Jihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-9483772b0bac42a333fd1b37b868517b072394d502c85bba2c19c23a3501c3ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cluster Analysis</topic><topic>DNA Methylation</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic aspects</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Physiological aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, YangLan</creatorcontrib><creatorcontrib>Tao, Han</creatorcontrib><creatorcontrib>Zou, Guobing</creatorcontrib><creatorcontrib>Yan, Cairong</creatorcontrib><creatorcontrib>Guan, Jihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, YangLan</au><au>Tao, Han</au><au>Zou, Guobing</au><au>Yan, Cairong</au><au>Guan, Jihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic epigenetic mode analysis using spatial temporal clustering</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2016-12-23</date><risdate>2016</risdate><volume>17</volume><issue>Suppl 17</issue><spage>537</spage><epage>537</epage><pages>537-537</pages><artnum>537</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Differentiation of human embryonic stem cells requires precise control of gene expression that depends on specific spatial and temporal epigenetic regulation. Recently available temporal epigenomic data derived from cellular differentiation processes provides an unprecedented opportunity for characterizing fundamental properties of epigenomic dynamics and revealing regulatory roles of epigenetic modifications. This paper presents a spatial temporal clustering approach, named STCluster, which exploits the temporal variation information of epigenomes to characterize dynamic epigenetic mode during cellular differentiation. This approach identifies significant spatial temporal patterns of epigenetic modifications along human embryonic stem cell differentiation and cluster regulatory sequences by their spatial temporal epigenetic patterns. The results show that this approach is effective in capturing epigenetic modification patterns associated with specific cell types. In addition, STCluster allows straightforward identification of coherent epigenetic modes in multiple cell types, indicating the ability in the establishment of the most conserved epigenetic signatures during cellular differentiation process.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28155634</pmid><doi>10.1186/s12859-016-1331-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2016-12, Vol.17 (Suppl 17), p.537-537, Article 537
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5259871
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Analysis
Cell differentiation
Cell Differentiation - genetics
Cluster Analysis
DNA Methylation
Embryonic stem cells
Embryonic Stem Cells - metabolism
Embryonic Stem Cells - physiology
Epigenesis, Genetic
Epigenetic inheritance
Gene Expression Regulation, Developmental
Genetic aspects
Histones - metabolism
Humans
Physiological aspects
title Dynamic epigenetic mode analysis using spatial temporal clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20epigenetic%20mode%20analysis%20using%20spatial%20temporal%20clustering&rft.jtitle=BMC%20bioinformatics&rft.au=Gan,%20YangLan&rft.date=2016-12-23&rft.volume=17&rft.issue=Suppl%2017&rft.spage=537&rft.epage=537&rft.pages=537-537&rft.artnum=537&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-016-1331-z&rft_dat=%3Cgale_pubme%3EA474876009%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865522243&rft_id=info:pmid/28155634&rft_galeid=A474876009&rfr_iscdi=true