Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9)

Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-01, Vol.7 (1), p.41167-41167, Article 41167
Hauptverfasser: Long, Wentong, Panigrahi, Rashmi, Panwar, Pankaj, Wong, Kenneth, O′Neill, Debbie, Chen, Xing-Zhen, Lemieux, M. Joanne, Cheeseman, Chris I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41167
container_issue 1
container_start_page 41167
container_title Scientific reports
container_volume 7
creator Long, Wentong
Panigrahi, Rashmi
Panwar, Pankaj
Wong, Kenneth
O′Neill, Debbie
Chen, Xing-Zhen
Lemieux, M. Joanne
Cheeseman, Chris I.
description Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous sugar transporters such as glucose transporters 1 and 5 (SLC2A1 & SLC2A5) and the xylose transporter (XylE), despite the fact that these transporters have similar protein structures. Our in silico substrate docking study has revealed that urate and fructose bind within the same binding pocket in hSLC2A9, yet with distinct orientations, and allowed us to identify novel residues for urate binding. Our functional studies confirmed that N429 is a key residue for both urate binding and transport. We have shown that cysteine residues, C181, C301 and C459 in hSLC2A9 are also essential elements for mediating urate transport. Additional data from chimæric protein analysis illustrated that transmembrane helix 7 of hSLC2A9 is necessary for urate transport but not sufficient to allow urate transport to be induced in glucose transporter 5 (hSLC2A5). These data indicate that urate transport in hSLC2A9 involves several structural elements rather than just a unique substrate binding pocket.
doi_str_mv 10.1038/srep41167
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5259734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899477842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-caddf879f87d1e7c8f65ef8b73cda37c3940dad2cc3fad048aa6b91082a8182d3</originalsourceid><addsrcrecordid>eNplkV1LHDEYhYNUXNG98A9IoDda2DZfM0luCrK0Kl0Q6u51yOZDI7PJNJkR_PeNrN1uayAkcB7O-x4OAGcYfcaIii8lu55h3PIDcEwQa2aEEvJh7z8B01KeUD0NkQzLIzAhAmNOhTgG9ta6OAQfjB5CijB5-MO9wJ-uBDu6An3KcJX14OB978wrB5dZx9KnPMAQ4c240RFed6NJxf2VXIYSXjzeL-bkSl6egkOvu-Kmb-8JWH3_tpzfzBZ317fzq8XMMCqGmdHWesFlvRY7boRvG-fFmlNjNeWGSoastsQY6rVFTGjdriVGgmiBBbH0BHzd-vbjeuOsqcmy7lSfw0bnF5V0UP8qMTyqh_SsGtJITlk1uHgzyOlXjT-oTSjGdZ2OLo1FYdHiFnHEeUU__oc-pTHHGq9SUjLOBSOVutxSJqdSm_K7ZTBSr_WpXX2VPd_ffkf-KasCn7ZAqVJ8cHlv5Du336lfpJs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899477842</pqid></control><display><type>article</type><title>Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9)</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Long, Wentong ; Panigrahi, Rashmi ; Panwar, Pankaj ; Wong, Kenneth ; O′Neill, Debbie ; Chen, Xing-Zhen ; Lemieux, M. Joanne ; Cheeseman, Chris I.</creator><creatorcontrib>Long, Wentong ; Panigrahi, Rashmi ; Panwar, Pankaj ; Wong, Kenneth ; O′Neill, Debbie ; Chen, Xing-Zhen ; Lemieux, M. Joanne ; Cheeseman, Chris I.</creatorcontrib><description>Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous sugar transporters such as glucose transporters 1 and 5 (SLC2A1 &amp; SLC2A5) and the xylose transporter (XylE), despite the fact that these transporters have similar protein structures. Our in silico substrate docking study has revealed that urate and fructose bind within the same binding pocket in hSLC2A9, yet with distinct orientations, and allowed us to identify novel residues for urate binding. Our functional studies confirmed that N429 is a key residue for both urate binding and transport. We have shown that cysteine residues, C181, C301 and C459 in hSLC2A9 are also essential elements for mediating urate transport. Additional data from chimæric protein analysis illustrated that transmembrane helix 7 of hSLC2A9 is necessary for urate transport but not sufficient to allow urate transport to be induced in glucose transporter 5 (hSLC2A5). These data indicate that urate transport in hSLC2A9 involves several structural elements rather than just a unique substrate binding pocket.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep41167</identifier><identifier>PMID: 28117388</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/443/272 ; 631/45 ; Animals ; Cysteine ; Cysteine - chemistry ; Cysteine - metabolism ; Data processing ; Fructose ; Fructose - chemistry ; Fructose - metabolism ; Glucose ; Glucose transport ; Glucose Transport Proteins, Facilitative - chemistry ; Glucose Transport Proteins, Facilitative - metabolism ; Glucose transporter ; Homeostasis ; Humanities and Social Sciences ; Humans ; Metabolic disorders ; Molecular Docking Simulation ; multidisciplinary ; Protein Binding ; Protein Structure, Tertiary ; Protein transport ; Residues ; Science ; Sugar ; Uric acid ; Uric Acid - chemistry ; Uric Acid - metabolism ; Xenopus laevis ; Xylose</subject><ispartof>Scientific reports, 2017-01, Vol.7 (1), p.41167-41167, Article 41167</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-caddf879f87d1e7c8f65ef8b73cda37c3940dad2cc3fad048aa6b91082a8182d3</citedby><cites>FETCH-LOGICAL-c438t-caddf879f87d1e7c8f65ef8b73cda37c3940dad2cc3fad048aa6b91082a8182d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259734/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259734/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28117388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Wentong</creatorcontrib><creatorcontrib>Panigrahi, Rashmi</creatorcontrib><creatorcontrib>Panwar, Pankaj</creatorcontrib><creatorcontrib>Wong, Kenneth</creatorcontrib><creatorcontrib>O′Neill, Debbie</creatorcontrib><creatorcontrib>Chen, Xing-Zhen</creatorcontrib><creatorcontrib>Lemieux, M. Joanne</creatorcontrib><creatorcontrib>Cheeseman, Chris I.</creatorcontrib><title>Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9)</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous sugar transporters such as glucose transporters 1 and 5 (SLC2A1 &amp; SLC2A5) and the xylose transporter (XylE), despite the fact that these transporters have similar protein structures. Our in silico substrate docking study has revealed that urate and fructose bind within the same binding pocket in hSLC2A9, yet with distinct orientations, and allowed us to identify novel residues for urate binding. Our functional studies confirmed that N429 is a key residue for both urate binding and transport. We have shown that cysteine residues, C181, C301 and C459 in hSLC2A9 are also essential elements for mediating urate transport. Additional data from chimæric protein analysis illustrated that transmembrane helix 7 of hSLC2A9 is necessary for urate transport but not sufficient to allow urate transport to be induced in glucose transporter 5 (hSLC2A5). These data indicate that urate transport in hSLC2A9 involves several structural elements rather than just a unique substrate binding pocket.</description><subject>631/443/272</subject><subject>631/45</subject><subject>Animals</subject><subject>Cysteine</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - metabolism</subject><subject>Data processing</subject><subject>Fructose</subject><subject>Fructose - chemistry</subject><subject>Fructose - metabolism</subject><subject>Glucose</subject><subject>Glucose transport</subject><subject>Glucose Transport Proteins, Facilitative - chemistry</subject><subject>Glucose Transport Proteins, Facilitative - metabolism</subject><subject>Glucose transporter</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Metabolic disorders</subject><subject>Molecular Docking Simulation</subject><subject>multidisciplinary</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein transport</subject><subject>Residues</subject><subject>Science</subject><subject>Sugar</subject><subject>Uric acid</subject><subject>Uric Acid - chemistry</subject><subject>Uric Acid - metabolism</subject><subject>Xenopus laevis</subject><subject>Xylose</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1LHDEYhYNUXNG98A9IoDda2DZfM0luCrK0Kl0Q6u51yOZDI7PJNJkR_PeNrN1uayAkcB7O-x4OAGcYfcaIii8lu55h3PIDcEwQa2aEEvJh7z8B01KeUD0NkQzLIzAhAmNOhTgG9ta6OAQfjB5CijB5-MO9wJ-uBDu6An3KcJX14OB978wrB5dZx9KnPMAQ4c240RFed6NJxf2VXIYSXjzeL-bkSl6egkOvu-Kmb-8JWH3_tpzfzBZ317fzq8XMMCqGmdHWesFlvRY7boRvG-fFmlNjNeWGSoastsQY6rVFTGjdriVGgmiBBbH0BHzd-vbjeuOsqcmy7lSfw0bnF5V0UP8qMTyqh_SsGtJITlk1uHgzyOlXjT-oTSjGdZ2OLo1FYdHiFnHEeUU__oc-pTHHGq9SUjLOBSOVutxSJqdSm_K7ZTBSr_WpXX2VPd_ffkf-KasCn7ZAqVJ8cHlv5Du336lfpJs</recordid><startdate>20170124</startdate><enddate>20170124</enddate><creator>Long, Wentong</creator><creator>Panigrahi, Rashmi</creator><creator>Panwar, Pankaj</creator><creator>Wong, Kenneth</creator><creator>O′Neill, Debbie</creator><creator>Chen, Xing-Zhen</creator><creator>Lemieux, M. Joanne</creator><creator>Cheeseman, Chris I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170124</creationdate><title>Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9)</title><author>Long, Wentong ; Panigrahi, Rashmi ; Panwar, Pankaj ; Wong, Kenneth ; O′Neill, Debbie ; Chen, Xing-Zhen ; Lemieux, M. Joanne ; Cheeseman, Chris I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-caddf879f87d1e7c8f65ef8b73cda37c3940dad2cc3fad048aa6b91082a8182d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/443/272</topic><topic>631/45</topic><topic>Animals</topic><topic>Cysteine</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - metabolism</topic><topic>Data processing</topic><topic>Fructose</topic><topic>Fructose - chemistry</topic><topic>Fructose - metabolism</topic><topic>Glucose</topic><topic>Glucose transport</topic><topic>Glucose Transport Proteins, Facilitative - chemistry</topic><topic>Glucose Transport Proteins, Facilitative - metabolism</topic><topic>Glucose transporter</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Metabolic disorders</topic><topic>Molecular Docking Simulation</topic><topic>multidisciplinary</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein transport</topic><topic>Residues</topic><topic>Science</topic><topic>Sugar</topic><topic>Uric acid</topic><topic>Uric Acid - chemistry</topic><topic>Uric Acid - metabolism</topic><topic>Xenopus laevis</topic><topic>Xylose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Wentong</creatorcontrib><creatorcontrib>Panigrahi, Rashmi</creatorcontrib><creatorcontrib>Panwar, Pankaj</creatorcontrib><creatorcontrib>Wong, Kenneth</creatorcontrib><creatorcontrib>O′Neill, Debbie</creatorcontrib><creatorcontrib>Chen, Xing-Zhen</creatorcontrib><creatorcontrib>Lemieux, M. Joanne</creatorcontrib><creatorcontrib>Cheeseman, Chris I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Wentong</au><au>Panigrahi, Rashmi</au><au>Panwar, Pankaj</au><au>Wong, Kenneth</au><au>O′Neill, Debbie</au><au>Chen, Xing-Zhen</au><au>Lemieux, M. Joanne</au><au>Cheeseman, Chris I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9)</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-01-24</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>41167</spage><epage>41167</epage><pages>41167-41167</pages><artnum>41167</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous sugar transporters such as glucose transporters 1 and 5 (SLC2A1 &amp; SLC2A5) and the xylose transporter (XylE), despite the fact that these transporters have similar protein structures. Our in silico substrate docking study has revealed that urate and fructose bind within the same binding pocket in hSLC2A9, yet with distinct orientations, and allowed us to identify novel residues for urate binding. Our functional studies confirmed that N429 is a key residue for both urate binding and transport. We have shown that cysteine residues, C181, C301 and C459 in hSLC2A9 are also essential elements for mediating urate transport. Additional data from chimæric protein analysis illustrated that transmembrane helix 7 of hSLC2A9 is necessary for urate transport but not sufficient to allow urate transport to be induced in glucose transporter 5 (hSLC2A5). These data indicate that urate transport in hSLC2A9 involves several structural elements rather than just a unique substrate binding pocket.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28117388</pmid><doi>10.1038/srep41167</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-01, Vol.7 (1), p.41167-41167, Article 41167
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5259734
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/443/272
631/45
Animals
Cysteine
Cysteine - chemistry
Cysteine - metabolism
Data processing
Fructose
Fructose - chemistry
Fructose - metabolism
Glucose
Glucose transport
Glucose Transport Proteins, Facilitative - chemistry
Glucose Transport Proteins, Facilitative - metabolism
Glucose transporter
Homeostasis
Humanities and Social Sciences
Humans
Metabolic disorders
Molecular Docking Simulation
multidisciplinary
Protein Binding
Protein Structure, Tertiary
Protein transport
Residues
Science
Sugar
Uric acid
Uric Acid - chemistry
Uric Acid - metabolism
Xenopus laevis
Xylose
title Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Key%20Residues%20for%20Urate%20Specific%20Transport%20in%20Human%20Glucose%20Transporter%209%20(hSLC2A9)&rft.jtitle=Scientific%20reports&rft.au=Long,%20Wentong&rft.date=2017-01-24&rft.volume=7&rft.issue=1&rft.spage=41167&rft.epage=41167&rft.pages=41167-41167&rft.artnum=41167&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep41167&rft_dat=%3Cproquest_pubme%3E1899477842%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899477842&rft_id=info:pmid/28117388&rfr_iscdi=true